Specific features of combustion of nanothermites based on nanoaluminum at laser initiation
- Authors: Kirilenko V.G.1, Grishin L.I.2,3, Dolgoborodov A.Y.1,2,3, Brazhnikov M.A.1, Kuskov M.L.1, Valyano G.E.2
-
Affiliations:
- N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
- Joint Institute for High Temperatures of the Russian Academy of Sciences
- National Research Nuclear University MEPhI
- Issue: Vol 15, No 1 (2022)
- Pages: 82-97
- Section: Articles
- URL: https://journal-vniispk.ru/2305-9117/article/view/288296
- DOI: https://doi.org/10.30826/CE22150110
- ID: 288296
Cite item
Abstract
The work deals with thermites based on mixtures of nanosized Al with oxides of copper, bismuth, molybdenum, and nickel. New data have been obtained on the minimum initiation energy and burning rate depending on the density and the ratio of the components. The thermites were initiated by a laser diode pulse with a wavelength of 808 nm and a radiation power density of up to 700 W/cm2. The parameters of ignition and burning were recorded using a multichannel pyrometer and high-speed video camera. The brightness temperature of nanothermite combustion products has been measured. The effect that inert light-absorbing nanosized additives have on the threshold parameters of laser-induced initiation and on the burning rate of the mixtures has been studied. Based on the results obtained, the assumptions were made regarding the mechanism of initiation and the reaction process induced by laser pulse radiation.
Full Text

About the authors
Vladimir G. Kirilenko
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
Author for correspondence.
Email: vladkiril@gmail.com
Candidate of Science in physics and mathematics, senior research scientist
Russian Federation, 4 Kosygin Str., Moscow 119991Leonid I. Grishin
Joint Institute for High Temperatures of the Russian Academy of Sciences; National Research Nuclear University MEPhI
Email: lenya-grishin@mail.ru
junior research scientist, Ph.D. student
Russian Federation, 13-2 Izhorskaya Str., Moscow 125412; 31 Kashirskoe Sh., Moscow 115409Alexander Yu. Dolgoborodov
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences; Joint Institute for High Temperatures of the Russian Academy of Sciences; National Research Nuclear University MEPhI
Email: aldol@ihed.ras.ru
Doctor of Science in physics and mathematics, chief research scientist, head of laboratory, teacher
Russian Federation, 4 Kosygin Str., Moscow 119991; 13-2 Izhorskaya Str., Moscow 125412; 31 Kashirskoe Sh., Moscow 115409Michael A. Brazhnikov
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
Email: birze@inbox.ru
Candidate of Science in pedagogy, senior research scientist
Russian Federation, 4 Kosygin Str., Moscow 119991Michael L. Kuskov
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
Email: mkuskov72@gmail.com
Candidate of Science in physics and mathematics, senior research scientist
Russian Federation, 4 Kosygin Str., Moscow 119991Georgii E. Valyano
Joint Institute for High Temperatures of the Russian Academy of Sciences
Email: gev06@bk.ru
senior research scientist
Russian Federation, 13-2 Izhorskaya Str., Moscow 125412References
- Brish, A. A., I. A. Galeev, B. N. Zaitsev, E. A. Sbitnev, and L. V. Tatarintsev. 1966. Laser-excited detonation of condensed explosives. Combust. Explo. Shock Waves 2(3):81–82.
- Sivan, J., Y. Haas, D. Grinstein, Sh. Kochav, G. Yegudayev, and L. Kalontarov. 2015. Boron particle size effect on B/KNO3 ignition by a diode laser. Combust. Flame 162(2):516–527.
- Herreros, D. N., and X. Fang. 2017. Laser ignition of elastomer-modified cast double-base (EMCDB) propellant using a diode laser. Opt. Laser Technol. 89:21–26.
- Kim, Ji Hoon, Myung Hoon Cho, Kyung Ju Kim, and Soo Hyung Kim. 2017. Laser ignition and controlled explosion of nanoenergetic materials: The role of multi-walled carbon nanotubes. Carbon 118:268–277. doi: 10.1016/j.carbon.2017.03.050.
- Korotkikh, A. G., I. V. Sorokin, E. A. Selikhova, and V. A. Arkhipov. 2020. Effect of B, Fe, Ti, Cu nanopowders on the laser ignition of Al-based high-energy materials. Combust. Flame 222:103–110.
- Hu, Peng, Mingchun Xian, Lizhi Wu, Haonan Zhang, Yinghua Ye, and Ruiqi Shen. 2021. Laser ignition of a laser-thermal differential composite system based on non-uniform absorption. Chem. Eng. J. 421(2). doi: 10.1016/j.cej.2020.127869.
- Uhlenhake, K. E., D. Olsen, M. Gomez, M. rnek, M. Zhou, and S. F. Son. 2021. Photoflash and laser ignition of full density nano-aluminum PVDF films. Combust. Flame 233. doi: 10.1016/j.combustflame.2021.111570.
- Zarko, V. E., and A. A. Gromov, eds. 2016. Energetic nanomaterials: Synthesis, characterization, and application. Amsterdam: Elsevier. 485 p.
- Pantoya, M., and J. Granier. 2006. The effect of slow heating rates on the reaction mechanisms of nano and micron composite thermite reactions. J. Therm. Anal. Calorim. 85:37–43.
- Bhattacharya, S., A. K. Agarwal, T. Rajagopalan, and V. K. Patel, eds. 2019. Nano-energetic materials: Energy, environment and sustainability. Springer, Singapore. 305 p.
- Pantoya, M., and J. Granier. 2004. Laser ignition of nanocomposite thermites. Combust. Flame 138(4):373–383.
- Sanders, V., B. Asay, T. Foley, B. Tappan, A. Pacheco, and S. Son. 2007. Reaction propagation of four nanoscale energetic composites (Al/MoO3, Al/WO3, Al/CuO, and Bi2O3). J. Propul. Power 23:707–714.
- Egorshev, V. Y., V. P. Sinditskii, and K. K. Yartsev. 2013. Combustion of high-density CuO/Al nanothermites at elevated pressures. 10th Autumn Seminar (International) on Propellants, Explosives and Pyrotechnics Proceedings. 287–290.
- Petre, C., D. Chamberland, T. Ringuette, S. Ringuette, S. Paradis, and R. Stowe. 2014. Low-power laser ignition of aluminum/metal oxide nanothermites. Int. J. Energetic Materials Chemical Propulsion 13:479–494.
- Aduev, B. P., M. V. Anan’eva, A. A. Zvekov, et al. 2014. Micro-hotspot model for the laser initiation of explosive decomposition of energetic materials with melting taken into account. Combust. Explo. Shock Waves 50(6):704–710.
- Kolesov, V. I., and D. I. Patrikeyev. 2017. Gorenie nanotermitov v vakuume [Combustion of nanothermites at subatmospheric pressure]. Goren. Vzryv (Mosk.) — Combustion and Explosion 10(1):69–72.
- Saceleanu, F., M. Idir, N. Chaumeix, and J. Z. Wen. 2018. Combustion characteristics of physically mixed 40 nm aluminum/copper oxide nanothermites using laser ignition. Front. Chem. 6:465. doi: 10.3389/fchem.2018.00465.
- Gordeyev, V. V., M. V. Kazutin, N. V. Kozyrev, A. O. Kashkarov, I. A. Rubtsov, K. A. Ten, and S. I. Rafeychik. 2018. Issledovanie mekhanizma goreniya nanotermitnykh sistem [Investigation of the mechanism of combustion nanothermite systems]. Polzunovskiy Vestnik 2:96–101.
- Kirilenko, V. G., L. I. Grishin, A. Yu. Dolgoborodov, and M. A. Brazhnikov. 2020. Lazernoe initsiirovanie nanotermitov Al/CuO и Al/Bi2O3 [Laser initiation of nanothermites Al/CuO and Al/Bi2O3]. Goren. Vzryv (Mosk.) — Combustion and Explosion 13(1):145–155.
- Dolgoborodov, A. Yu., V. G. Kirilenko, M. A. Brazhnikov, L. I. Grishin, M. L. Kuskov, and G. E. Valyano. 2021. Ignition of nanothermites by a laser diode pulse. Defence Technology 18(2):194–204. doi: 10.1016/j.dt.2021.01.006.
- Guen, M. Y., and A. V. Miller. 1961. Method for production of metal aerosols. SU Patent 814432.
- Kuskov, M. L., A. N. Zhigach, I. O. Leipunskii, A. N. Gorbachev, E. S. Afanasenkova, and O. A. Safronova. 2019. Combined equipment for synthesis of ultrafine metals and metal compounds powders via flow-levitation and crucible methods. IOP Conf. Ser. — Mat. Sci. 558:012022.
- Dolgoborodov, A. Yu., V. G. Kirilenko, A. N. Streletskii, I. V. Kolbanev, A. A. Shevchenko, B. D. Yankovskii, S. Y. Ananev, and G. E. Valyano. 2018. Mekhanoaktivirovanyy termitnyy sostav Al/CuO [Mechanoactivated thermite composition Al/CuO]. Goren. Vzryv (Mosk.) — Combustion and Explosion 11(3):117–124.
- Streletskii, A. N., I. V. Kolbanev, G. A. Vorobieva, A. Y. Dolgoborodov, V. G. Kirilenko, and B. D. Yankovskii. 2018. Kinetics of mechanical activation of Al/CuO thermite. J. Mater. Sci. 53(19):13550–13559.
- Yankovsky, B. D., A. Yu. Dolgoborodov, L. I. Grishin, and S. Yu. Ananev. 2021. Study of combustion wave propagation in linear charges from mechanically activated thermite mixtures. J. Phys. Conf. Ser. 1787:012017. doi: 10.1088/1742-6596/1787/1/012017.
- Gogulya, M. F. 1988. Temperatury udarnogo szhatiya kondensirovannykh sred [Temperature of shock compression of condensed matter]. Moscow: MEPhI. 68 p.
- Grishinin, S. G., A. A. Solodovnikov, and G. P. Startsev. 1958. Fotograficheskiy metod izmereniya temperatury istochnikov sveta [Photographic method for measuring the temperature of light sources]. Trudy Komissii po pirometrii pri VNIIM [Proceedings of the Commission on Pyrometry at VNIIM]. Moscow: Standartgiz. Vol. 1.
Supplementary files
