Measurement of flow rate characteristics of flow-through gas generator at gasification of low-melting solid material by ambient temperature airflow

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A semiempirical method is proposed for determining the flow characteristics of a flow-through gas generator operating on gasification of a solid low-melting material by an ambient temperature airflow. Experimental studies of the gasification of a polypropylene charge are performed to demonstrate the approach. In the test fires, the yield of gasification products ranged from 43 to 120 g/s and the ratio of mass flow rates of air and polypropylene gasification products was 2.3–2.9. The analysis of errors inherent in the approach is carried out.

About the authors

Dmitry A. Vnuchkov

S. A. Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: vnuchkov@itam.nsc.ru

Candidate of Science in technology, junior research scientist

Russian Federation, 4/1 Institutskaya Str., Novosibirsk 630090

Valery I. Zvegintsev

S. A. Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences

Email: zvegin@itam.nsc.ru

Doctor of Science in technology, chief research scientist

Russian Federation, 4/1 Institutskaya Str., Novosibirsk 630090

Denis G. Nalivaichenko

S. A. Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences

Email: denis@itam.nsc.ru

Candidate of Science in technology, research scientist

Russian Federation, 4/1 Institutskaya Str., Novosibirsk 630090

Sergey M. Frolov

N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: smfrol@chph.ras.ru

Doctor of Science in physics and mathematics, head of department, head of laboratory, N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences; professor, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Russian Federation, 4 Kosygin Str., Moscow 119991; 31 Kashirskoe Sh., Moscow 115409

References

  1. Kondratova, O. A. 2007. Issledovanie rabochikh protsessov tverdotoplivnykh gazogeneratorov podushek bezopasnosti [Study of working processes of solid-fuel gas generators of airbags]. Tomsk. PhD Thesis.
  2. Karabeyoglu, A., G. Zilliac, B. J. Cantwell, S. DeZilwa, and P. Castellucci. 2004. Scale-up tests of high regression rate paraffin-based hybrid rocket fuels. // J. Propul. Power 20:1037–1045.
  3. Encinar, J. M., and J. F. González. 2008. Pyrolysis of synthetic polymers and plastic wastes. Kinetic study. Fuel Process. Technol. 89:678–686.
  4. Aboulkas, A., K. El harfi, and A. El Bouadili. 2010. Thermal degradation behaviors of polyethylene and polypropylene. Part I: Pyrolysis kinetics and mechanisms. Energ. Convers. Manage. 51:1363–1369.
  5. Mazzetti, A., L. Merotto, and G. Pinarello. 2016. Paraffin-based hybrid rocket engines applications: A review and a market perspective. Acta Astronaut. 126:286–297.
  6. Srivastava, Diksha. 2021. Advances in biofuel technology: A review. IOSR J. Engineering 11(4):32–41.
  7. Rashkovskiy, S. A., and S. E. Yakush. 2020. Numerical simulation of low-melting temperature solid fuel regression in hybrid rocket engines. Acta Astronaut. 176:710–716. doi: 10.1016/j.actaastro.2020.05.002.
  8. Salgansky, E. A., and N. A. Lutsenko.2021. Effect of solid fuel characteristics on operating conditions of low-temperature gas generator for high-speed flying vehicle. Aerosp. Sci. Technol. 109:106420.
  9. Bobrov, A. N., D. A. Yagodnikov, and I. V. Popov. 1992. Ignition and combustion in a two-component powder suspension in a gas. Combust. Explo. Shock Waves 28(5):453–457. doi: 10.1007/BF00755713.
  10. Glotov, O. G., D. A. Yagodnikov, V. S. Vorob’ev, et al. 2007. Ignition, combustion and agglomeration of encapsulated aluminum particles in a composite solid propellant. II. Experimental studies of agglomeration. Combust. Explo. Shock Waves 43(3):320–333. doi: 10.1007/s10573-007-0045-y.
  11. Krasil’nikov, A. V., G. A. Makarevich, and A. V. Mikhailov. 2008. Stend dlya eksperimental’nogo issledovaniya sverkhzvukovogo goreniya uglevodorodnykh topliv [A facility for an experimental research in supersonic hydrocarbon fuels combustion]. Kosmonavtika i raketostroenie [Cosmonautics and Rocket Manufacturing] 1(50):35–42.
  12. DeLuca, L. T., L. Galfetti, G. Colombo, F. Maggi, A. Bandera, M. Boiocchi, G. Gariani, L. Merotto, C. Paravan, and A. Reina. 2011. Time-resolved burning of solid fuels for hybrid rocket propulsion. Progress in propulsion physics. Eds. L. DeLuca, C. Bonnal, O. Haidn, and S. Frolov. EUCASS advances in aerospace sciences book ser. EDP Sciences – TORUS PRESS. 2:405–426.
  13. Shabunin, A. I., S. V. Kalinin, V. I. Sarab’ev, D. A. Yagodnikov, and A. R. Pоlyanskii. 2012. Rezul’taty issledovaniya i razrabotki nizkotemperaturnykh bystrogoryashchikh gazogeneriruyushchikh topliv dlya sistem peremeshcheniya elementov ispolnitel’nykh mekhanizmov [The results of research and development of low-temperature, fast-burning, gas-generating fuels for systems moving elements of actuators]. Science and Education 02. 13 p. Available at: http://technomag.edu.ru/doc/ 299736.html (accessed August 15, 2021).
  14. Wang, L. H., Z. W. Wu, H. W. Chi, et al. 2015. Numerical and experimental study on the solid-fuel scramjet combustor. J. Propul. Power 31(2):685–693. doi: 10.2514/ 1.B35302.
  15. Lv, Zhong, Zhi-xun Xia, Bing Liu, and Li-ya Huang. 2017. Preliminary experimental study on solid-fuel rocket scramjet combustor. J. Zhejiang University — SCIENCE A 18(2):106–112.
  16. Shiplyuk, A. N., V. I. Zvegintsev, S. M. Frolov, D. A. Vnuchkov, T. A. Kiseleva, V. A. Kislovsky, S. V. Lukashevich, A. Yu. Melnikov, and D. G. Nalivaychenko. 2020. Gasification of low-melting hydrocarbon material in the airflow heated by hydrogen combustion. Int. J. Hydrogen Energ. 45:9098–9112.
  17. Shiplyuk, A. N., V. I. Zvegintsev, S. M. Frolov, D. A. Vnuchkov, V. A. Kislovsky, N. A. Kiseleva, S. V. Lukashevich, A. Yu. Melnikov, and D. G. Nalivaychenko. 2021. Gasification of low-melting fuel in a high-temperature flow of inert gas. J. Propul. Power 37(1):20–28. doi: 10.2514/1.B37780.
  18. Arkhipov, V. A., S. A. Basalaev, V. T. Kuznetsov, V. A. Poryazov, and A. V. Fedorychev. 2021. Modeling of ignition and combustion of boron-containing solid propellants. Combust. Explo. Shock Waves 57(3):308–313.
  19. Zarko, V., V. Perov, A. Kiskin, and D. Nalivaichenko. 2019. Microwave resonator method for measuring transient mass gasification rate of condensed systems. Acta Astronaut. 158:272–276. doi: 10.1016/j.actaastro.2019.03.028.
  20. Evans, B. N., A. Favorito, and K. Kuo. 2005. Study of solid fuel burning-rate enhancement behavior in an X-ray translucent hybrid rocket motor. AIAA Paper No. 2005-3909. doi: 10.2514/6.2005-3909.
  21. Zvegintsev. V. I. 2014. Gazodinamicheskie ustanovki kratkovremennogo deystviya. Chast’ 1. Ustanovki dlya nauchnykh issledovaniy [Short-duration gasdynamic facilities. Part 1. Facilities for scientific research]. Novosibirsk: Parallel. 551 p.
  22. Trusov, B. G. 1991. Modelirovanie khimicheskikh i fazovykh ravnovesiy pri vysokikh temperaturakh “Astra 4” [Modeling of chemical and phase equilibria at high temperatures “Astra 4”]. Moscow: N. E. Bauman Moscow State Technical University Publs. 40 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).