Fast deflagration-to-detonation transition in helical tubes
- Authors: Shamshin I.O.1, Aksenov V.S.1,2, Kazachenko M.V.1, Gusev P.A.1, Frolov S.M.1,2
-
Affiliations:
- N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
- Issue: Vol 16, No 3 (2023)
- Pages: 29-50
- Section: Articles
- URL: https://journal-vniispk.ru/2305-9117/article/view/289473
- DOI: https://doi.org/10.30826/CE23160304
- EDN: https://elibrary.ru/VNRLHO
- ID: 289473
Cite item
Abstract
When designing a new type of power plants operating on pulsed detonations of gaseous or liquid fuels, the concept of fast deflagration-to-detonation transition (FDDT) is used. According to the concept, the flame arising from a weak ignition source must accelerate so fast as to form an intense shock wave at a minimum distance from the ignition source so that the intensity of the shock wave is sufficient for fast shock-to-detonation transition due to some additional arrangements. Hence, the FDDT concept implies the use of special means for flame acceleration and shock wave amplification. In the present work, FDDT has been studied using a standard pulsed detonation tube (SDT) comprising a Shchelkin spiral and a helical tube section with ten coils as the means for flame acceleration and shock amplification (focusing) devices, respectively. To attain the FDDT at the shortest distances for fuels of essentially different detonability, the diameter of the SDT is taken close to the limiting diameter of detonation propagation for air mixtures of regular hydrocarbon fuels (50 mm). The experiments have been conducted with air mixtures of individual gaseous fuels (hydrogen, methane, propane, and ethylene) and binary fuel compositions (methane–hydrogen, propane–hydrogen, and ethylene–hydrogen) at normal pressure and temperature conditions. The use of the helical tube with ten coils is shown to considerably extend the fuel-lean concentration limits of detonation as compared to the straight tube and a tube with a helical section with two coils.
About the authors
Igor O. Shamshin
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
Author for correspondence.
Email: igor_shamshin@mail.ru
Candidate of Science in physics and mathematics, leading research scientist
Russian Federation, MoscowVictor S. Aksenov
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Email: v.aksenov@mail.ru
Candidate of Science in physics and mathematics, senior research scientist, associate professor
Russian Federation, Moscow; MoscowMaxim V. Kazachenko
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
Email: maksx71997@gmail.com
research engineer
Russian Federation, MoscowPavel A. Gusev
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
Email: gusevPA@yandex.ru
Candidate of Science in physics and mathematics, research scientist
Russian Federation, MoscowSergey M. Frolov
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Email: smfrol@chph.ras.ru
Doctor of Science in physics and mathematics, head of department, head of laboratory, professor
Russian Federation, Moscow; MoscowReferences
- Bone, W. A., and R. P. Fraser. 1929. A photographic investigation of flame movements in carbonic oxide – oxygen explosions. Philos. T. Roy. Soc. A 228:197–234. Available at: https://royalsocietypublishing.org/doi/ pdf/10.1098/rsta.1929.0005 (accessed August 22, 2023).
- Zel’dovich, Y. B. 1944. Teoriya goreniya i detonatsii gazov [Theory of combustion and detonation of gases]. Moscow–Leningrad: USSR AS Publs. 36 p.
- Oppenheim, A. K. 1972. Introduction to gasdynamics of explosions. Wien – New York: Springer. 220 p.
- Shchelkin, K. I. 1949. Bystroe gorenie i spinovaya detonatsiya gazov [Fast combustion and spinning detonation of gases]. Moscow: Military Publishing House of the Ministry of Armed Forces of the USSR. 196 p.
- Lindstedt, R. P., and Michels H. J. 1989. Deflagration to detonation transitions and strong deflagrations in alkane and alkene air mixtures. Combust. Flame 76(2):169–181. doi: 10.1016/0010-2180(89)90065-5.
- Sorin, R., R. Zitoun, and D. Desbordes. 2006. Optimization of the deflagration to detonation transition: Reduction of length and time of transition. Shock Waves 15(2):137–145. doi: 10.1007/s00193-006-0007-4.
- Theodorczyk, A., J. H. S. Lee, and R. Knystautas. 1988. Propagation mechanism of quasidetonations. 22nd Symposium (International) on Combustion Proceedings. Pittsburgh, PA: The Combustion Institute. 1723–1731.
- Lee, J. H. S. 2008. The detonation phenomenon. New York, NY: The Cambridge University Press. 400 p.
- Feng, X., and X. Huang. 2022. Influence of variable blocking ratio on DDT process. Energies 15:7706. doi: 10.3390/en15207706.
- Frolov, S. M. 2006. Initiation of strong reactive shocks and detonation by traveling ignition pulses. J. Loss Prevent. Proc. 19(2-3):238–244.
- Frolov, S. M. 2008. Fast deflagration-to-detonation transition. Russ. J. Phys. Chem. B 2(3):442–455.
- Frolov, S. M., I. V. Semenov, P. V. Komissarov, P. S. Utkin, and V. V. Markov. 2007. Reduction of the deflagration-to-detonation transition distance and time in a tube with regular shaped obstacles. Dokl. Phys. Chem. 415(2):209–213.
- Li, J.-M., C. J. Teo, K. S. Lim, C.-S. Wen, and B. C. Khoo . 2013. Deflagration to detonation transition by hybrid obstacles in pulse detonation engines. AIAA Paper No. 2013-3657. doi: 10.2514/6.2013-3657.
- Coates, A. M., D. L. Mathias, and B. J. Cantwell . 2019. Numerical investigation of the effect of obstacle shape on deflagration to detonation transition in a hydrogen–air mixture. Combust. Flame 209:278–290. doi: 10.1016/j.combustflame.2019.07.044.
- Xiao, H., and E. S. Oran. 2020. Flame acceleration and deflagration-to-detonation transition in hydrogen–air mixture in a channel with an array of obstacles of different shapes. Combust. Flame 220:378–393. doi: 10.1016/j.combustflame.2020.07.013.
- Liu, Z., X. Li, M. Li, and H. Xiao. 2023. Flame acceleration and DDT in a channel with fence-type obstacles: Effect of obstacle shape and arrangement. P. Combust. Inst. 39(3):2787–2796. doi: 10.1016/j.proci.2022.08.046.
- Smirnov, N. N., V. F. Nikitin, A. P. Boichenko, M. V. Tyurnikov, and V. V. Baskakov. 1999. Deflagration to detonation transition in gases and its application to pulsed detonation devices. Gaseous and heterogeneous detonations: Science to applications. Eds. G. Roy, S. Frolov, K. Kailasanath, and N. Smirnov. Moscow: ENAS Publs. 65–94.
- Li, T., X. Wang, B. Xu, and F. Kong. 2021. An efficient approach to achieve flame acceleration and transition to detonation. Phys. Fluids 33(5):056103. doi: 10.1063/ 5.0048100.
- Frolov, S. M., V. A. Smetanyuk, V. S. Aksenov, and A. S. Koval’ . 2017. Deflagration-to-detonation transition in crossed-flow fast jets of propellant components. Dokl. Phys. Chem. 476(1):153–156.
- Wang, Y., W. Fan, S. Li, Q. Zhang, and H. Li. 2017. Numerical simulations of flame propagation and DDT in obstructed detonation tubes filled with fluidic obstacles. AIAA Paper No. 2017-2382.
- Peng, H., Y. Huang, R. Deiterding, Y. You, and Z. Luan. 2019. Effects of transverse jet parameters on flame propagation and detonation transition in hydrogen–oxygen–argon mixture. Combust. Sci. Technol. 193(9):1516–1537. doi: 10.1080/00102202.2019.1700236.
- Starikovskaia, S. 2006. Plasma assisted ignition and combustion. J. Phys. D Appl. Phys. 39:R265–R299.
- Zhukov, V., and A. Starikovskii. 2006. Effect of a nanosecond gas discharge on deflagration to detonation transition. Combust. Explo. Shock Waves 42(2):195–204.
- Gray, J. A. T., and D. A. Lacoste. 2019. Enhancement of the transition to detonation of a turbulent hydrogen–air flame by nanosecond repetitively pulsed plasma discharges. Combust. Flame 199:258–266. doi: 10.1016/ j.combustflame.2018.10.023.
- Ciccarelli, G., and B. de Witt. 2006. Detonation initiation by shock reflection from an orifice plate. Shock Waves 15(3-4):259–265. doi: 10.1007/s00193-006-0026-1.
- Frolov, S. M., and V. S. Aksenov. 2009. Initiation of gas detonation in a tube with a shaped obstacle. Dokl. Phys. Chem. 427(1):129–132.
- Habicht, F. E., F. C. Y cel, J. A. Gray, and C. O. Paschereit . 2020. Detonation initiation by shock focusing at elevated pressure conditions in a pulse detonation combustor. Int. J. Spray Combust. 12:175682772092171. doi: 10.1177/1756827720921718.
- Frolov, S. M., I. O. Shamshin, S. N. Medvedev, and A. V. Dubrovskii . 2011. Initiation of detonation in a tube with a profiled central body. Dokl. Phys. Chem. 438(2):114–117.
- Frolov, S. M., V. S. Aksenov, and I. O. Shamshin . 2007. Initiation of gaseous detonation in tubes with sharpU-bends. Dokl. Phys. Chem. 417(20):22–25.
- Frolov, S. M., V. S. Aksenov, and I. O. Shamshin . 2007. Shock wave and detonation propagation through U-bend tubes. P. Combust. Inst. 31:2421–2428.
- Frolov, S. M., V. S. Aksenov, and I. O. Shamshin . 2008. Propagation of shock and detonation waves in channels with U-shaped bends of limiting curvature. Russ. J. Phys. Chem. B 2(5):759–774.
- Min-cheol Gwak, Jack J. Yoh, M. Gwak, and J.-J. Yoh. 2013. Effect of multi-bend geometry on deflagration to detonation transition of a hydrocarbon–air mixture in tubes. Int. J. Hydrogen Energ. 38(26):11446–11457. doi: 10.1016/j.ijhydene.2013.06.108.
- Zheng, H., W. Zhu, X. Jia, and N. Zhao. 2022. Eulerian–Lagrangian modeling of deflagration to detonation transition in n-decane/oxygen/nitrogen mixtures. Phys. Fluids 34:126110. doi: 10.1063/5.0125327.
- Pan, Z., Z. Zhang, H. Yang, M. Gui, P. Zhang, and Y. Zhu. 2021. Experimental and numerical investigation on flame propagation and transition to detonation in curved channel. Aerosp. Sci. Technol. 118:107036. doi: 10.1016/j.ast.2021.107036.
- Gai, J., H. Qiu, C. Xiong, and Z. Huang. 2022. Experimental investigation on the propagation process of combustion wave in the annular channel filled with acetylene–air/oxygen mixture. Flow Turbul. Combust. 108:797–817. doi: 10.1007/s10494-021-00301-x.
- Frolov, S. M., V. Ya. Basevich, V. S. Aksenov, and S. A. Polikhov . 2005. Optimization study of spray detonation initiation by electric discharge. Shock Waves 14(3):175–186.
- Frolov, S. M., V. S. Aksenov, and V. Ya. Basevich . 2006. Initiation of heterogeneous detonation in tubes with coils and Shchelkin spiral. High Temp. 44(2):283–290.
- Frolov, S. M., and V. S. Aksenov . 2007. Deflagration-to-detonation transition in a kerosene–air mixture. Dokl. Phys. Chem. 416(1):261–264.
- Frolov, S. M., I. V. Semenov, I. F. Ahmedyanov, and V. V. Markov. 2009. Shock-to-detonation transition in tube coils. 26th Symposium (International) on Shock Waves Eds. K. Hannemann and F. Seiler. Berlin–Heidelberg: Springer. 1:365–370.
- Frolov, S. M., V. Ya. Basevich, V. S. Aksenov, and S. A. Polikhov. 2003. Detonation initiation by controlled triggering of electric discharges. J. Propul. Power 19(4):573–580.
- Frolov, S. M., V. Ya. Basevich, V. S. Aksenov, and S. A. Polikhov. 2004. Initiation of gaseous detonation by a traveling forced ignition pulse. Dokl. Phys. Chem. 394(1):16–18.
- Frolov, S. M., V. Ya. Basevich, V. S. Aksenov, and S. A. Polikhov. 2004. Initsiirovanie gazovoy detonatsii begushchim impul’som zazhiganiya [Initiation of gas detonation by a travelling ignition source]. Khim. Fiz. 23(4):61–67.
- Frolov, S. M., V. Ya. Basevich, V. S. Aksenov, and S. A. Polikhov. 2005. Spray detonation initiation by controlled triggering of electric discharges. J. Propul. Power 21(1):54–64.
- Ciccarelli, G., C. Johansen, and M. Hickey . 2005. Flame acceleration enhancement by distributed ignition points. J. Propul. Power 21(6):1029–1034. doi: 10.2514/1.14425.
- Frolov, S. M., V. S. Aksenov, and V. Ya. Basevich. 2006. Detonation initiation by shock wave interaction with the prechamber jet ignition zone. Doklady Phys. Chem. 410(1):255–259.
- Frolov, S. M., V. S. Aksenov, and V. Ya. Basevich. 2009. Shock-to-detonation transition due to shock interaction with prechamber-jet cloud. 26th Symposium (International) on Shock Waves Proceedings. Eds. K. Hannemann and F. Seiler. Berlin–Heidelberg: Springer. 1:359–364.
- Frolov, S. M., V. I. Zvegintsev, V. S. Aksenov, I. V. Bilera, M. V. Kazachenko, I. O. Shamshin, P. A. Gusev, M. S. Belotserkovskaya, and E. V. Koverzanova. 2018. Detonatsionnaya sposobnost’ vozdushnykh smesey produktov piroliza polipropilena [Detonability of air mixtures of the polypropylene pyrolysis products]. Goren. Vzryv (Mosk.) — Combustion and Explosion 11(4):44–60. doi: 10.30826/CE18110406.
- Frolov, S. M., I. O. Shamshin, V. S. Aksenov, M. V. Kazachenko, and P. A. Gusev. 2019. Ranzhirovaniegazovykh toplivno-vozdushnykh smesey po ikh detonatsionnoy sposobnosti s pomoshch’yu etalonnoy impul’sno-detonatsionnoy truby [Ranking of gaseous fuel–air mixtures according to their detonability using a standard pulsed detonation tube]. Goren. Vzryv (Mosk.) — Combustion and Explosion 12(3):78–90. doi: 10.30826/CE19120309.
- Frolov, S. M., V. I. Zvegintsev, I. O. Shamshin, M. V. Kazachenko, V. S. Aksenov, I. V. Bilera, and I. V. Semenov. 2020. Detonatsionnaya sposobnost’ vozdushnykh smesey produktov piroliza polietilena [Detonability of air mixtures of polyethylene pyrolysis products]. Goren. Vzryv (Mosk.) — Combustion and Explosion 13(2):48–61. doi: 10.30826/CE20130206.
- Frolov, S. M., V. I. Zvegintsev, V. S. Aksenov, I. V. Bilera, M. V. Kazachenko, I. O. Shamshin, P. A. Gusev, and M. S. Belotserkovskaya. 2020. Detonability of fuel–air mixtures. Shock Waves. doi: 10.1007/s00193-020-00966-9.
- Frolov, S. M., I. O. Shamshin, M. V. Kazachenko, V. S. Aksenov, I. V. Bilera, V. S. Ivanov, and V. I. Zvegintsev. 2021. Polyethylene pyrolysis products: Their detonability in air and applicability to solid-fuel detonation ramjets. Energies 14:820. doi: 10.3390/en14040820.
- Shamshin, I. O., M. V. Kazachenko, S. M. Frolov, and V. Y. Basevich. 2020. Perekhod goreniya v detonatsiyu v vozdushnykh smesyakh metanovodorodnogo goryuchego [Deflagration-to-detonation transition in air mixtures of hydrogen–methane fuel]. Goren. Vzryv (Mosk.) — Combustion and Explosion 13(3):60–75. doi: 10.30826/ CE20130306.
- Shamshin, I. O., M. V. Kazachenko, S. M. Frolov, and V. Y. Basevich. 2021. Deflagration-to-detonation transition in stochiometric mixtures of the binary methane–hydrogen fuel with air. Int. J. Hydrogen Energ. doi: 10.1016/j.ijhydene.2021.07.209.
- Shamshin, I. O., M. V. Kazachenko, S. M. Frolov, and V. Ya. Basevich. 2021. Perekhod goreniya v detonatsiyu v vozdushnykh smesyakh propanovodorodnogo goryuchego [Deflagration-to-detonation transition in air mixtures of propane–hydrogen fuel]. Goren. Vzryv (Mosk.) — Combustion and Explosion 14(2):8–25. doi: 10.30826/ CE21140202.
- Shamshin, I. O., M. V. Kazachenko, S. M. Frolov, and V. Ya. Basevich. 2022. Deflagration-to-detonation transition in stochiometric propane–hydrogen–air mixtures. Fuels 3:667–681. doi: 10.3390/fuels3040040.
- Shamshin, I. O., M. V. Kazachenko, S. M. Frolov, and V. Ya. Basevich. 2021. Perekhod goreniya v detonatsiyuv vozdushnykh smesyakh etilenovodorodnogo goryuchego [Deflagration-to-detonation transition in air mixtures of ethylene–hydrogen fuel]. Goren. Vzryv (Mosk.) — Combustion and Explosion 14(2):26–39. doi: 10.30826/ CE21140203.
- Shamshin, I. O., M. V. Kazachenko, S. M. Frolov, and V. Ya. Basevich. 2022. Transition of deflagration to detonation in ethylene–hydrogen–air mixtures. Int. J. Hydrogen Energ. 17(37):16676–16685. doi: 10.1016/j.ijhydene. 2022.03.158.
- Frolov, S. M., I. O. Shamshin, V. S. Aksenov, V. S. Ivanov, and P. A. Vlasov. 2023. Ion sensors for pulsed and continuous detonation combustors. Chemosensors 11(33). 20 p. doi: 10.3390/chemosensors11010033.
- Borisov, A. A., and S. A. Loban’. Detonation limits of hydrocarbon–air mixtures in tubes. 1977. Combust. Explo. Shock Waves 13(5):618–621. doi: 10.1007/BF00742219.
- Borisov, A. A., B. E. Gel’fand, S. A. Loban’, A. E. Mailkov, and S. V. Khomik. 1982. Issledovanie predelov detonatsii toplivno-vozdushnykh smesey v gladkikh i sherokhovatykh trubakh [Detonation limits of fuel–air mixtures in smooth and rough tubes]. Khim. Fiz. 2(6):848–853.
- Nettleton, M. A. 1987. Gaseous detonations: Their nature, effects and control. London – New York: Chapman and Hall. 255 p.
Supplementary files
