Pressure measurements in air shock waves from the aboveground explosion by isolated suspended gauges
- Authors: Basakina S.S.1, Komissarov P.V.1, Lavrov V.V.2, Tochilin S.N.1, Gavryushova V.D.1
-
Affiliations:
- N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
- Issue: Vol 16, No 3 (2023)
- Pages: 51-61
- Section: Articles
- URL: https://journal-vniispk.ru/2305-9117/article/view/289503
- DOI: https://doi.org/10.30826/CE23160305
- EDN: https://elibrary.ru/VVWMSQ
- ID: 289503
Cite item
Abstract
Various factors are discussed that affect the measurement of the parameters of air shock waves (ASW). A novel method for obtaining the parameters of ASW from explosions of condensed explosive charges elevated above the surface is considered. It is shown that the use of suspended sensors isolated from the seismic wave in the ground makes it possible to avoid factors that deform the results of pressure traces. The vertical fields of the ASW parameters in the plane of symmetry for explosions of aboveground spherical charges are obtained, clearly demonstrating the zone of increased parameters along the surface, corresponding to the reflected shock wave. The obtained results can be used both for a quick assessment of the impact of blast wave and to verify the numerical modeling of the explosion above the surface.
About the authors
Svetlana S. Basakina
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
Author for correspondence.
Email: basakina.s@mail.ru
junior research scientist
Russian Federation, MoscowPavel V. Komissarov
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
Email: komissarov@center.chph.ras.ru
Candidate of Science in physics and mathematics, senior research scientist
Russian Federation, MoscowVladimir V. Lavrov
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
Email: lavr@ficp.ac.ru
Candidate of Science in physics and mathematics, senior research scientist
Russian Federation, ChernogolovkaSergey N. Tochilin
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
Email: nordica06@rambler.ru
engineer
Russian Federation, MoscowVarvara D. Gavryushova
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
Email: varvarahate@gmail.com
engineer
Russian Federation, MoscowReferences
- Sadovskiy, M. A. 1952. Mekhanicheskoe deystvie vozdushnykh udarnykh voln vzryva po dannym eksperimental’nykh issledovaniy [Mechanical impact of air shock waves of high explosive according to experimental data]. Fizika vzryva [Physics of explosion]. Publishing House of the Academy of Sciences of the USSR. 1:20–110.
- Stoner, R. G., and W. Bleakney . 1948. The attenuation of spherical shock waves in air. J. Appl. Phys. 19:670–678. doi: 10.1063/1.1698189.
- Swisdak, M. M. 1975. Explosion effects and properties. Part 1. Explosion effect in air. White Oak, TX: Naval Surface Weapons Center. Report NSWC/WOL/TR-75-116.
- Plooster, M. N. 1982. Blast effects from cylindrical explosive charges: Experimental measurements. China Lake, CA: Naval Report Centre. Report NWC TP 6382.
- Formby, S. A., and R. K. Wharton. 1996. Blast for characteristics and TNT equivalence values some commercial explosives detonated at ground level. J. Hazard. Mater. 50:183–198. doi: 10.1016/0304-3894(96)01791-8.
- Wharton, R. K., S. A. Formby, and R. Merrifield . 2000. Airblast TNT equivalence for a range of commercial blasting explosives. J. Hazard. Mater. A79:31–39.
- ARMY TM 5-1300 / NAVY NAVFAC P-397 / AIR FORCE AFR 88-22. 1990. Structures to resist the effects of accidental exposition. 1796 p.
- Baker, W. E., P. A. Cox, J. J. Kulesz, et al. 1983. Explosion hazards and evalution. 1st ed. Elsevier Scientific Publishing Co. 807 p.
- Baron, V. L., and V. H. Kantor. 1989. Tekhnika i tekhnologiya vzryvnykh rabot v SShA [Technique and technology of blasting in the USA]. Moscow: Nedra. 376 p.
- Rybnov, Y. S., V. I. Kudryavtsev, and V. F. Evmenov . 2004. Experimental studies of the effect of the ground atmospheric layer and the underlying surface on the amplitude of weak air blast waves from ground chemical explosions. Combust. Explo. Shock Waves 40(6):699–701. doi: 10.1023/B:CESW.0000048274.21374.cf.
- Ganopol’skiy, M. I. 2011. Rezul’taty eksperimental’nykh issledovaniy udarnykh vozdushnykh voln pri vzryvakh na zemnoy poverkhnosti [Results of experimental studies of air shock waves of the explosions on the earth’s surface]. Gornyy informatsionno-analiticheskiy byulleten’ [Mining Informational and Analytical Bulletin] S2-3:5–37.
- Kornilkov, M. V., V. G. Shemenev, P. V. Men’shikov, and V. A. Sinicyn . 2013. Faktory, vliyayushhie na intensivnost’ udarnoy vozdushnoy volny pri izmenyayushchikhsya meteorologicheskikh usloviyah [Factors affecting the occurrence of an air shock wave under changing meteorological conditions]. Izvestiya vysshikh uchebnykh zavedeniy. Gornyy zhurnal [Minerals and Mining Engineering] 7:65–71.
- Hieu, Chan Kuang, and V. A. Belin. 2013. Analiz rezul’tatov naturnykh izmereniy parametrov vozdushnykh i seysmicheskikh voln pri provedenii burovzryvnykh rabot na ugol’nykh razrezakh “NUIBEO” vo V’etname [Effect of the wind and air temperature on the degree of shock air wills in the explosion rocks on VietnamТs coal pits]. Gornyy informatsionno-analititsheskiy byulleten’ [Mining Informational and Analytical Bulletin] 8:284–291.
- Tochilin, S. N., P. V. Komissarov, and S. S. Basakina. 2020. Assessment of errors in determining the TNT equivalency of air explosions. Russ. J. Phys. Chem. B 14(4):631–635. doi: 10.1134/S1990793120040259.
- Andreev, S. G., A. V. Babkin, F. A. Baum, et al. 2002. Fizika vzryva [Physics of the explosion]. Ed. L. P. Orlenko. 3rd ed. Moscow: Fizmatlit. 832 p.
- Yankelevsky, D. Z., Y. S. Karinski, and V. R. Feldgun. 2011. Re-examination of the shock wave’s peak pressure attenuation in soils. Int. J. Impact Eng. 38(11):864–881.
- Sumskoi, S. I., A. S. Sof’in, S. K. Zainetdinov, and A. A. Agapov. 2020. Parameters of air cylindrical shock waves. Russ. J. Phys. Chem. B 14(4):625–630. doi: 10.1134/S1990793120040235.
- Tsikulin, M. A. 1960. Vozdushnaya udarnaya volna pri vzryve tsilindricheskogo zaryada bol’shogo udlineniya [Air shock wave of the explosion of an elongated cylindrical charge]. PMTF 3:188–193.
- Johnson, C., Ph. Mulligan, K. Williams, et al. 2018. Effect of explosive charge geometry on shock wave propagation. AIP Conf. Proc. 1979:150021-1–150021-6. doi: 10.1063/1.5044977.
- Esparza, E D. 1986. Blast measurements and equivalency for spherical charges at small scaled distances. Int. J. Impact Eng. 4(1):23–40. doi: 10.1016/0734-743X(86)90025-4.
- Pinaev, A. V., V. T. Kuzavov, and V. K. Kedrinskii. 2000. Shock-wave structure in the near zone upon explosion of spatial charges in air. J. Appl. Mech. Tech. Phy. 41(5):836–844. doi: 10.1007/BF02468729.
- Belov, S. I., V. A. Virchenko, V. D. Kravchov, and V. I. Laptev. 2013. Vliyanie vysoty podryva zaryada VV na povyshenie fugasnogo deystviya na poverkhnosti zemli vo vneshney zone vzryva [Effect of HE charge detonation height on increase of explosive effect on ground surface in outer zone of explosion]. Voprosy oboronnoy tekhniki [Military Engineering] 1-2:14–18.
- Knock, C., and N. Davies. 2013. Blast waves from cylindrical charges. Shock Waves 23:337–343. doi: 10.1007/s00193-013-0438-7.
- Knock, C., N. Davies, and T. Reeves. 2014. Predicting blast waves from the axial direction of a cylindrical charge. Propell. Explos. Pyrot. 40(2):169–179. doi: 10.1002/prep.201300188.
- Chen, Yuan, Sen Xu, De Jun Wu, and Da Bin Liu. 2016. Experimental study of the explosion of aluminized explosives in air. Cent. Eur. J. Energ. Mat. 13(1):117–134. doi: 10.22211/cejem/64967.
- Sochet, I. 2018. Blast wave experiments of high explosives. 1st ed. Cham, Switzerland. 199 p. doi: 10.1007/978-3-319-70831-7_7.
- Li, T., Cheng Wang, Tonghui Yang, et al. 2020. A novel construction method of computational domains on large-scale near-ground explosion problems. J. Comput. Phys. 407:109226. doi: 10.1016/j.jcp.2019.109226.
- Lukic, S. 2020. Statistical analysis of blast wave decay coefficient and maximum pressure based on experimental results. WIT Transactions Built Environment 198:65–78. doi: 10.2495/SUSI200061.
- Langran-Wheeler, Ch., S. E. Rigby, S. D. Clarke, et al. 2021. Near-field spatial and temporal blast pressure distributions from non-spherical charges: Horizontally-aligned cylinders. Int. J. Protective Structures 12(4):492–516. doi: 10.1177/ 204141962110134.
- Yong-xu Wang, Yi Liu, Qi-ming Xu, et al. 2021. Effect of metal powders on explosion of fuel–air explosives with delayed secondary igniters. Defence Technology 17(3):785–791. doi: 10.1016/j.dt.2020.05.010.
- Williams, K., M. J. Langenderfer, G. Olbricht, and C. E. Johnson . 2021. Blast wave shaping by altering cross- sectional shape. Propell. Explos. Pyrot. 46(6):926–934.
- Donato, G., and S. J. Belongie . 2001. Approximate thin plate spline mappings. Computer vision. Eds. A. Heyden, G. Sparr, M. Nielsen, and P. Johansen. Lecture notes in computer science ser. Berlin–Heidelberg: Springer. 2352:21–31. doi: 10.1007/3-540-47977-5_2.
Supplementary files
