Deflagration-to-detonation transition in air mixtures of propane–hydrogen fuel
- Authors: Shamshin I.O.1, Kazachenko M.V.1, Frolov S.M.1,2, Basevich V.Y.1
-
Affiliations:
- N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
- A. G. Merzhanov Institute for Structural Macrokinetics and Materials Science, Russian Academy of Sciences
- Issue: Vol 14, No 2 (2021)
- Pages: 8-25
- Section: Articles
- URL: https://journal-vniispk.ru/2305-9117/article/view/292046
- DOI: https://doi.org/10.30826/CE21140202
- ID: 292046
Cite item
Abstract
The previously proposed experimental method for evaluating the detonability of fuel–air mixtures, based on measuring the run-up distance and/or run-up time of deflagration-to-detonation transition (DDT) in a standard pulsed detonation tube, was applied to study the DDT in stoichiometric air mixtures of blended propane–hydrogen fuel with a volume fraction of hydrogen ranging from 0 to 1 under the fixed thermodynamic and gasdynamic conditions. Based on the known data on combustion and self-ignition of such a fuel, it was expected that the DDT run-up distance and time should gradually decrease with hydrogen concentration and the corresponding dependences should be close to linear. Contrary to expectations, the observed dependences turned out to be nonlinear and, in some cases, nonmonotonic: they exhibit local maxima. Analysis of the results suggests that the observed dependences are a manifestation of the physicochemical properties of the fuel mixtures under study. A change in the design of the flame acceleration section in the detonation tube as a whole does not affect the nature of the obtained dependences: they remain nonlinear, although the nonmonotonicity degenerates. Like other critical phenomena in chemical kinetics, nonmonotonicity can manifest itself only near critical conditions and is obscured by other effects when moving away from the critical conditions.
About the authors
I. O. Shamshin
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
Author for correspondence.
Email: igor_shamshin@mail.ru
Candidate of Science in physics and mathematics, senior research scientist
Russian FederationM. V. Kazachenko
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
Email: maksx71997@gmail.com
junior research scientist
Russian FederationS. M. Frolov
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences; A. G. Merzhanov Institute for Structural Macrokinetics and Materials Science, Russian Academy of Sciences
Email: smfrol@chph.ras.ru
Doctor of Science in physics and mathematics, head of department, head of laboratory; head of laboratory
Russian FederationV. Ya. Basevich
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
Email: basevichv@yandex.ru
Doctor of Science in technology, professor, chief research scientist
Russian FederationReferences
- Shamshin, I. O., M. V. Kazachenko, S. M. Frolov, and V. Ya. Basevich 2020. Perekhod goreniya v detonatsiyu v vozdushnykh smesyakh metanovodorodnogo goryuchego [Deflagration-to-detonation transition in air mixtures of hydrogen–methane fuel]. Goren. Vzryv (Mosk.) — Combustion and Explosion 13(3):60–75. doi: 10.30826/CE20130306.
- Sokolik, A. S., and K. I. Shchelkin. 1933. Rasprostranenie plameni v smesyakh metana s kislorodom v zakrytykh trubakh [Flame propagation in mixtures of methane with oxygen in closed tubes]. Zh. Fiz. Khim. [Russ. J. Phys. Chem. A] 4(1):109–128.
- Sokolik, A. S. 1960. Samovosplamenenie, plamya i detonatsiya v gazakh [Self-ignition, flame, and detonation in gases]. Moscow: USSR AS Publs. 422 p.
- Lee, J. H. S. 2008. The detonation phenomenon. — New York, NY: The Cambridge University Press. 400 p.
- Frolov, S. M., and B. E. Gel’fand. 1990. O predel’nom diametre rasprostraneniya gazovoy detonatsii v trubakh
- [Limiting diameter for gas detonation propagation in tubes]. Dokl. Acad. Nauk SSSR 312(5):1177–1180.
- Frolov, S. M., I. O. Shamshin, V. S. Aksenov, M. B. Kazachenko, and P. A. Gusev. 2019. Ranzhirovanie gazovykh toplivno-vozdushnykh smesey po ikh detonatsionnoy sposobnosti s poshch’yu etaloonoy impul’sno-detonatsionnoy truby [Ranking of gaseous fuel–air mixtures according to their detonability using a standard pulsed detonation tube]. Goren. Vzryv (Mosk.) — Combustion and Explosion 12(3):78–90. doi: 10.30826/ CE19120309.
- Frolov, S. M., V. I. Zvegintsev, V. S. Aksenov, I. V. Bilera, M. V. Kazachenko, I. O. Shamshin, P. A. Gusev, and M. S. Belotserkovskaya. 2020. Detonability of fuel–air mixtures. Shock Waves 30:721–739. doi: 10.1007/s00193- 020-00966-9.
- Metghalchi, M., and J. C. Keck. 1980. Laminar burning velocity of propane–air mixtures at high temperature and pressure. Combust. Flame 38:143–154. doi: 10.1016/ 0010-2180(80)90046-2.
- Bosschaart, K. J., L. P. H. de Goey, and J. M. Burgers. 2004. The laminar burning velocity of flames propagating
- in mixtures of hydrocarbons and air measured with the heat flux method. Combust. Flame 136(3):261–269.
- Marley, S. K., and W. L. Roberts. 2005. Measurements of laminar burning velocity and Markstein number using high-speed chemiluminescence imaging. Combust. Flame 141(4):473–477. doi: 10.1016/j.combustflame.2005.02. 011.
- Huzayyin, A. S., H.A. Moneib, M. S. Shehatta, and A. M. A. Attia. 2008. Laminar burning velocity and explosion index of LPG–air and propane–air mixtures. Fuel 87:39–57. doi: 10.1016/j.fuel.2007.04.001.
- Akram, M., V. Ratna Kishore, and S. Kumar. 2012. Laminar burning velocity of propane/CO2/N2–air mixtures at elevated temperatures. Energ. Fuel. 26:5509–5518. doi: 10.1021/ef301000k.
- Dowdy, D. R., D. B. Smith, S. C. Taylor, and A. Williams. 1991. The use of expanding spherical flames to determine burning velocities and stretch effects in hydrogen/air mixtures. 23th Symposium (International) on Combustion Proceedings. Pittsburgh, PA: The Combustion Institute. 23(1):325–332. doi: 10.1016/S0082-0784(06)80275-4.
- Kwon, O. C., L.-K. Tseng, and G. M. Faeth. 1992. Laminar burning velocities and transition to unstable flames in H2/O2/N2 and C3 H8/O2/N2 mixtures. Combust. Flame 90(3-4):230–246. doi: 10.1016/0010-2180(92)90085-4.
- Tse, S. D., D. L. Zhu, and C. K. Law. 2000. Morphology and burning rates of expanding spherical flames in H2/O2/inert mixtures up to 60 atmospheres. P. Combust. Inst. 28(2):1793–1800. doi: 10.1016/S0082- 0784(00)80581-0.
- Penyazkov, O. G., K. A. Ragotner, A. J. Dean, and B. Varatharajan. 2005. Autoignition of propane–air mixtures behind reflected shock waves. P. Combust. Inst. 30:1941–1947. doi: 10.1016/j.proci.2004.08.122.
- Gallagher, S. M., H. J. Curran, W. K. Metcalfe, D. Healy, J. M. Simmie, and G. Bourque. 2008. A rapid compression machine study of the oxidation of propane in the negative temperature coefficient regime. Combust. Flame 153:316–333. doi: 10.1016/j.combustflame.2007.09.004.
- Cheng, R. K., and A. K. Oppenheim. 1984. Autoignition in methane–hydrogen mixtures. Combust. Flame 58:125– 139. doi: 10.1016/0010-2180(84)90088-9.
- Keromnes, A., W. K. Metcalfe, K. A. Heufer, N. Donohoe, A. K. Das, C.-J. Sung, J. Herzler, C. Naumann, P. Griebel, O. Mathieu, M. C. Krejci, E. L. Petersen, W. J. Pitz, and H. J. Curran. 2013. An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures. Combust. Flame 160(6):995– 1011. doi: 10.1016/j.combustflame.2013.01.001.
- Milton, B. E., and J. C. Keck. 1984. Laminar burning velocities in stoichiometric hydrogen and hydrogen–hydrocarbon gas mixtures. Combust. Flame 58(1):13–22. doi: 10.1016/0010-2180(84)90074-9.
- Yu, G., C. K. Law, and C. K. Wu. 1986. Laminar flame speeds of hydrocarbon–air mixtures with hydrogen addition. Combust. Flame 63(3):339–347.
- Law, C. K., and O. C. Kwon. 2004. Effects of hydrocarbon substitution on atmospheric hydrogen–air flame propagation. Int. J. Hydrogen Energ. 29(8):867–79. doi: 10.1016/j.ijhydene.2003.09.012.
- Tang, С., Z. Huang, C. Jin, J. He, J. Wang, X. Wang, and H. Miao. 2008. Laminar burning velocities and combustion characteristics of propane–hydrogen–air premixed flames. Int. J. Hydrogen Energ. 33:4906–4914. doi: 10.1016/j.ijhydene.2008.06.063.
- Zhen, H. S., C. S. Cheung, C. W. Leung, and Y. S. Choy. 2012. Effects of hydrogen concentration on the emission and heat transfer of a premixed LPG-hydrogen flame. Int. J. Hydrogen Energ. 37(7):6097–6105. doi: 10.1016/j.ijhydene.2011.12.130.
- Titova, N. S., P. S. Kuleshov, O. N. Favorskii, and A. M. Starik. 2014. The features of ignition and combustion of composite propane–hydrogen fuel: Modeling study. Int. J. Hydrogen Energ. 39(12):6764–6773. doi: 10.1016/j.ijhydene.2014.01.211.
- Man, X., C. Tang, L. Wei, L. Pan, and Z. Huang. 2013. Measurements and kinetic study on ignition delay times of propane/hydrogen in argon diluted oxygen. Int. J. Hydrogen Energ. 38:2523–2530. doi: 10.1016/ j.ijhydene.2012.12.020.
- Sevrouk, K. L., P. N. Krivosheyev, O. G. Penyazkov, S. A. Torohov, N. S. Titova, and A. M. Starik. 2016. Numerical and experimental analysis of propane–hydrogen mixture ignition in air. J. Phys. Conf. Ser. 774:012083. doi: 10.1088/1742-6596/774/1/012083.
- Schwer D. A., Kailasanath K. Towards an assessment of rotating detonation engines with fuel blends. AIAA Paper No. 2017-4942. doi: 10.2514/6.2017-4942.
- Basevich, V. Ya., S. N. Medvedev, F. S. Frolov, and S. M. Frolov. 2015. Promotion of the high-temperature autoignition of hydrogen–air and methane–air mixtures by normal alkanes. Russ. J. Phys. Chem. B 9(2):250–254. doi: 10.1134/S1990793115020025.
- Meyer, J. W., P. A. Urtiew, and A. K. Oppenheim. 1970. On the inadequacy of gasdynamic processes for triggering the transition to detonation. Combust. Flame 14:13–20.
- Semenov, N. N. 1934. Tsepnye reaktsii [Chain reactions]. Leningrad: Goskhimizdat Publ.
- Lee, J. H. S., R. Knystautas, and A. Freiman. 1984. High speed turbulent deflagrations and transition to detonation in H2–air mixtures. Combust. Flame 56:227–239.
- Shchelkin, K. I. 1949. Bystroe gorenie i spinovaya detonatsiya gazov [Fast combustion and spinning detonation of gases]. Moscow: Voenizdat Publ. 196 p.
- Basevich, V. Ya., A. A. Belyaev, V. S. Posvyanskii, and S. M. Frolov. 2013. Mechanisms of the oxidation and combustion of normal paraffin hydrocarbons: Transition from C1–C10 to C11–C16. Russ. J. Phys. Chem. B 7(2):161– 169. doi: 10.1134/S1990793113020103.
Supplementary files
