Critical phenomena in modern technological processes
- Autores: Stolin A.M.1, Bazhin P.M.1, Stelmakh L.S.1
-
Afiliações:
- A. G. Merzhanov Institute of Structural Macrokinetics and Problems of Materials Science of the Russian Academy of Sciences
- Edição: Volume 15, Nº 2 (2022)
- Páginas: 125-134
- Seção: Articles
- URL: https://journal-vniispk.ru/2305-9117/article/view/286754
- DOI: https://doi.org/10.30826/CE22150213
- EDN: https://elibrary.ru/WDKWLF
- ID: 286754
Citar
Resumo
Examples of the main qualitative manifestations of the rheological effects of thixotropy and superanomalies of viscosity associated with modern chemical technologies are considered: additive technology, thixotropic metallurgy, and self-propagating high-temperature synthesis under conditions of a combination of combustion processes and high-temperature shear deformation.
Sobre autores
Alexander Stolin
A. G. Merzhanov Institute of Structural Macrokinetics and Problems of Materials Science of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: amstolin@ism.ac.ru
(b. 1941) — Doctor of Science in physics and mathematics, professor, head of laboratory, chief research scientist
Rússia, 8 Academician Osipyan Str., Chernogolovka, Moscow Region 142432Pavel Bazhin
A. G. Merzhanov Institute of Structural Macrokinetics and Problems of Materials Science of the Russian Academy of Sciences
Email: olimp@ism.ac.ru
(b. 1983) — Doctor of Science in technology, leading research scientist
Rússia, 8 Academician Osipyan Str., Chernogolovka, Moscow Region 142432Lyubov Stelmakh
A. G. Merzhanov Institute of Structural Macrokinetics and Problems of Materials Science of the Russian Academy of Sciences
Email: stelm@ism.ac.ru
(b. 1954) — Doctor of Science in physics and mathematics, leading research scientist
Rússia, 8 Academician Osipyan Str., Chernogolovka, Moscow Region 142432Bibliografia
- Stolin, A. M., A. Ya. Malkin, and A. G. Merzhanov. 1979. Non-isothermal processes and methods of investigation in the chemistry and mechanics of polymers. Russ. Chem. Rev. 48(8):798–811.
- Semenov, N. N. 1940. Teplovaya teoriya goreniya i vzryvov [Thermal theory of combustion and explosions]. Sov. Phys. Uspekhi 24(4):433–486.
- Zel’dovich, Ya. B. 1944. Teoriya goreniya i detonatsii gazov [Theory of combustion and detonation of gases]. Moscow–Leningrad: USSR AS Publs. 36 p.
- Frank-Kamenetskii, D. A. 1987. Diffuziya i teploperedacha v khimicheskoy kinetike [Diffusion and heat transfer in chemical kinetics]. Moscow: Nauka. 502 p.
- Merzhanov, A. G. 1979. Protsessy goreniya v kondensirovannykh sistemakh [Combustion processes in condensed systems]. Vestn. Akad. nauk SSSR 8:10–18.
- Merzhanov, A. G. 1975. Combustion processes in chemical reaction engineering. 5th Congres “CHISA.” 33. Article K4.20.
- Merzhanov, A. G. 2006. SVS na puti k industrializatsii [SHS on the way to industrialization]. Nauka — proizvodstvu [Science for Production] 2:19–24.
- Merzhanov, A. G. 1973. Nonisothermal methods in chemical kinetics. Combust. Explo. Shock Waves 9(1):3–28.
- Merzhanov, A. G., V. V. Barzykin, A. S. Shteinberg, and V. T. Gontkovskaya. 1977. Methodological principles in studying chemical reaction kinetics under conditions of programmed heating. Thermochim. Acta 21:301–332.
- Galakhov, A. V., V. A. Zelenskii, E. V. Shelekhov, L. V. Kovalenko, and M. I. Alymov. 2017. Powders for fabricating polycrystalline transparent ceramics: Synthetic procedures (an overview). Int. J. Self-Propag. High-Temp. Synth. 26(2):129–133.
- Simonenko, E. P., N. P. Simonenko, A. S. Lysenkov, et al. 2020. Reactive hot pressing of HfB2–SiC–Ta4HfC5 ultra-high temperature ceramics. Russ. J. Inorg. Chem. 65:446–457. doi: 10.1134/S0036023620030146.
- Kozerozhets, I. V., G. P. Panasyuk, E. A. Semenov, et al. 2020. Water state in the products of hydrothermal treatment of hydrargillite and Υ-Al2O3. Russ. J. Inorg. Chem. 65(9):1384–1389. doi: 10.1134/S0036023620090090.
- Kozerozhets, I. V., G. P. Panasyuk, E. A. Semenov, M. G. Vasil’ev, Y. D. Ivakin, and M. N. Danchevskaya. 2020. How acid medium affects the hydrothermal synthesis of boehmite. Russ. J. Inorg. Chem. 65(10):1529–1534. doi: 10.1134/S0036023620100149.
- Galiev, F. F., I. V. Saikov, M. I. Alymov, S. V. Konovalikhin, N. V. Sachkova, and V. D. Berbentsev. 2021. Composite rods by high-temperature gas extrusion of steel cartridges stuffed with reactive Ni–Al powder compacts:Influence of process parameters. Intermetallics 138:107317. doi: 1016/j.intermet.2021.107317.
- Shapkin, N. P., E. K. Papynov, O. O. Shichalin, et al. 2021. Spark plasma sintering-reactive synthesis of SiC and SiC–HfB ceramics based on natural renewable raw materials. Russ. J. Inorg. Chem. 66(5):629–637. doi: 10.1134/S0036023621050168.
- Kostikov, V.I., and A. N. Varenkov. 2003. Sverhvysokotemperaturnye kompozitsionnye materialy [Ultra-high temperature composite materials]. Moscow: Intermet Inzhiniring. 506 p.
- Ershova, I. O. 2003. 2003. Vliyanie nitridov tugoplavkikh metallov na svoystva spechennogo vol’frama i molibdena [The effect of high-melting point metal nitrides on the properties of sintered molybdenum and tungsten]. Metallovedenie i termicheskaya obrabotka metallov [Metal Science and Heat Treatment of Metals] 2:26–30.
- Andrievski, R. A. 2017. High-melting-point compounds: New approaches and new results. Phys. Usp. 60(3):276–289. doi: 10.3367/UFNe.2016.09.037972.
- Kablov, E. N., I. L. Svetlov, A. V. Neiman, P. G. Min, F. N. Karachevtsev, and M. I. Karpov. 2017. High-temperature composites based on the Nb–Si system reinforced with niobium silicides. Inorganic Materials Applied Research 8(4):609–617.
- Myachin, Y. V., E. A. Darenskaya, O. Y. Vaylina, S. P. Buyakova, S. N. Kulkov, and I. V. Turuntaev. 2017. Structure and properties of steel produced by metal injection molding. Inorgetic Materials Applied Research 8(2):331–334.
- Varchanis, S., G. Makrigiorgos, P. Moschopoulos, Y. Dimakopoulos, and J. Tsamopoulos. 2019. Modelling the rheology of thixotropic elasto-visco-plastic materials. J. Rheol. 63:609–639. doi: 10.1122/8.0000196.
- Atay, H. Y., D. Ai man, H. Jirkov , M. Behulova, and B. Ma ek. 2019. Use of thixoforming as a manufacturing method for metallic composites. Met. Mater. Int. 9. doi: 10.1007/s12540-019-00373-5.
- Pavlov, V. P., and G. V. Vinogradov. 1966. Obobshchjonnaya reologicheskaya kharakteristika plastichnykh dispersnykh sistem [Generalized rheological characteristic of plastic disperse systems]. Colloid. J. USSR 28(3):424–429.
- Kister, E. G., and L. I. Schegolevsky. 1970. O reologicheskom povedenii vodnykh suspenziy glin pri nagrevanii [On the rheological behavior of aqueous suspensions of clays upon heating]. Dokl. Akad. Nauk 195(1):140–142.
- Khil’ko, S. L., E. V. Titov, A. A. Fedoseeva, A. G. Petrenko, and R. A. Fedoseev. 2006. On the possibility of using two models of the viscosity superanomaly effect for analyzing the flow curves of structured disperse systems. Colloid J. 68:106–114.
- Stolin, A. M., S. I. Khudyaev, and L. M. Buchatskiy. 1978. K teorii sverhanomalii vyazkosti strukturirovannykh sistem [On the theory of superanomalies in the viscosity of structured systems]. Dokl. Akad. Nauk 243:430–433.
- Stolin, A. M., and S. I. Khudyaev. 1981. Obrazovanie prostranstvenno-neodnorodnykh sostoyaniy strukturirovannoy zhidkosti v oblasti sverkhanomalii vyazkosti [Formation of spatially inhomogeneous states of a structured liquid in the region of viscosity superanomaly]. Dokl. Akad. Nauk 260(5):1180–1184.
- Stolin, A. M., and V. I. Irzhak. 1993. Strukturno-neodnorodnye rezhimy techeniya v protsesse formovaniya polimernykh volokon [Structurally nonuniform flow regimes in the process of polymer fiber formation]. Polym. Sci. Ser. B 35(7):902–904.
- Chinn, R. E. 2016. Powder injection molding of silicon carbide: Processing issues. Metal Powder Report 71(6):460–464.
- Aksenenko, A. Y., S. A. Bychkov, V. N. Klimov, N. V. Korobova, F. Y. Tarasov, V. E. Frizen, and S. Y. Shevchenko. 2013. O vliyanii usloviy kristallizatsii na strukturu tiksozagotovok iz liteynykh Al splavov [About influence of crystallization parameters on microstructure of billets from Al-casting alloys for thixocasting]. Metallurgiya mashinostroeniya [Metallurgy Engineering] 2:17–20.
- Borisov, V. G. 2016. Tehnologiya proizvodstva fasonnykh izdeliy iz aluuminievykh splavov metodom tiksoformovki. Problemy i resheniya [A technology for production of shaped aluminum alloy components via the thixoforming technique. Problems and solutions. Tehnologiya legkikh splavov [Technology of Light Alloys] 2:71–79.
- Decker, R., S. LeBeau, B. Wilson, J. Reagan, N. Moskovich, and B. Bronfin. 2016. Thixomolding at 25 years. Sol. St. Phen. 256:3–8.
- Kapranos, P. 2019. Current state of semi-solid net-shape die casting. Metals — Basel 9(12):1301.
- Semenov, A. B., T. B. Ngo, and B. I. Semenov. 2019. Thixoforming of hypereutectic AlSi Cu2NiMg automotive pistons. Sol. St. Phen. 285:446–452.
- Merzhanov, A. G. 2003. Kontseptsiya razvitiya SVS kak oblasti nauchno-tekhnicheskogo progressa [The concept of SHS development as a field of scientific and technological progress]. Chernogolovka: Territoriya. 368 p.
- Stolin, A. M., and P. M. Bazhin. 2014. Manufacture of multipurpose composite and ceramic materials in the combustion regime and high-temperature deformation (SHS extrusion). Theor. Found. Chem. Eng. 48(6):751–763.
- Stolin, A. M., P. M. Bazhin, and M. I. Alymov. 2016. Deformation of SHS products under combustion conditions. Inorg. Mater. 52(6):618–624.
- Bazhin, P. M., and A. M. Stolin. 2018. Sovremennye napravleniya prakticheskogo ispol’zovaniya vysokotemperaturnogo sdvigovogo deformirovaniya poroshkovykh materialov v tekhnologii SVS [Modern directions of practical use of high-temperature shear deformation of powder materials in SHS technology]. Tehnologicheskoe gorenie [Technological combustion]. Eds. S. M. Aldoshin and M. I. Alymov. Moscow: RAS. 372–394.
- Chizhikov, A. P., A. M. Stolin, P. M. Bazhin, and M. I. Alymov. 2019. Production of hollow ceramic rods by SHS extrusion. Dokl. Chem. 484(2):79–81. doi: 10.1134/ S0012500819020083.
- Stolin, A. M., L. S. Stel’makh, S. V. Karpov, and M. I. Alymov. 2019. External friction in SHS compaction. Dokl. Chem. 487(2):235–237. doi: 10.1134/ S0012500819080081.
- Bazhin, P. M. 2019. Samorasprostranyayushchiysya vysokotemperaturnyy sintez v usloviyakh sdvigovogo vysokotemperaturnogo deformirovaniya dlya polucheniya kompozitsionnykh materialov i izdeliy na osnove tugoplavkikh soedineniy [Self-propagating high-temperature synthesis under high-temperature shear deformation to obtain composite materials and products based on refractory compounds]. Moscow. D.Sc. Diss. 380 p.
- Buchatskii, L. M., and A. M. Stolin. 1992. High-temperature rheology of SHS materials. J. Eng. Phys. Thermophys. 63(5):1120–1129.
Arquivos suplementares
