Critical phenomena in modern technological processes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Examples of the main qualitative manifestations of the rheological effects of thixotropy and superanomalies of viscosity associated with modern chemical technologies are considered: additive technology, thixotropic metallurgy, and self-propagating high-temperature synthesis under conditions of a combination of combustion processes and high-temperature shear deformation.

About the authors

Alexander M. Stolin

A. G. Merzhanov Institute of Structural Macrokinetics and Problems of Materials Science of the Russian Academy of Sciences

Author for correspondence.
Email: amstolin@ism.ac.ru

(b. 1941) — Doctor of Science in physics and mathematics, professor, head of laboratory, chief research scientist

Russian Federation, 8 Academician Osipyan Str., Chernogolovka, Moscow Region 142432

Pavel M. Bazhin

A. G. Merzhanov Institute of Structural Macrokinetics and Problems of Materials Science of the Russian Academy of Sciences

Email: olimp@ism.ac.ru

(b. 1983) — Doctor of Science in technology, leading research scientist

Russian Federation, 8 Academician Osipyan Str., Chernogolovka, Moscow Region 142432

Lyubov S. Stelmakh

A. G. Merzhanov Institute of Structural Macrokinetics and Problems of Materials Science of the Russian Academy of Sciences

Email: stelm@ism.ac.ru

(b. 1954) — Doctor of Science in physics and mathematics, leading research scientist

Russian Federation, 8 Academician Osipyan Str., Chernogolovka, Moscow Region 142432

References

  1. Stolin, A. M., A. Ya. Malkin, and A. G. Merzhanov. 1979. Non-isothermal processes and methods of investigation in the chemistry and mechanics of polymers. Russ. Chem. Rev. 48(8):798–811.
  2. Semenov, N. N. 1940. Teplovaya teoriya goreniya i vzryvov [Thermal theory of combustion and explosions]. Sov. Phys. Uspekhi 24(4):433–486.
  3. Zel’dovich, Ya. B. 1944. Teoriya goreniya i detonatsii gazov [Theory of combustion and detonation of gases]. Moscow–Leningrad: USSR AS Publs. 36 p.
  4. Frank-Kamenetskii, D. A. 1987. Diffuziya i teploperedacha v khimicheskoy kinetike [Diffusion and heat transfer in chemical kinetics]. Moscow: Nauka. 502 p.
  5. Merzhanov, A. G. 1979. Protsessy goreniya v kondensirovannykh sistemakh [Combustion processes in condensed systems]. Vestn. Akad. nauk SSSR 8:10–18.
  6. Merzhanov, A. G. 1975. Combustion processes in chemical reaction engineering. 5th Congres “CHISA.” 33. Article K4.20.
  7. Merzhanov, A. G. 2006. SVS na puti k industrializatsii [SHS on the way to industrialization]. Nauka — proizvodstvu [Science for Production] 2:19–24.
  8. Merzhanov, A. G. 1973. Nonisothermal methods in chemical kinetics. Combust. Explo. Shock Waves 9(1):3–28.
  9. Merzhanov, A. G., V. V. Barzykin, A. S. Shteinberg, and V. T. Gontkovskaya. 1977. Methodological principles in studying chemical reaction kinetics under conditions of programmed heating. Thermochim. Acta 21:301–332.
  10. Galakhov, A. V., V. A. Zelenskii, E. V. Shelekhov, L. V. Kovalenko, and M. I. Alymov. 2017. Powders for fabricating polycrystalline transparent ceramics: Synthetic procedures (an overview). Int. J. Self-Propag. High-Temp. Synth. 26(2):129–133.
  11. Simonenko, E. P., N. P. Simonenko, A. S. Lysenkov, et al. 2020. Reactive hot pressing of HfB2–SiC–Ta4HfC5 ultra-high temperature ceramics. Russ. J. Inorg. Chem. 65:446–457. doi: 10.1134/S0036023620030146.
  12. Kozerozhets, I. V., G. P. Panasyuk, E. A. Semenov, et al. 2020. Water state in the products of hydrothermal treatment of hydrargillite and Υ-Al2O3. Russ. J. Inorg. Chem. 65(9):1384–1389. doi: 10.1134/S0036023620090090.
  13. Kozerozhets, I. V., G. P. Panasyuk, E. A. Semenov, M. G. Vasil’ev, Y. D. Ivakin, and M. N. Danchevskaya. 2020. How acid medium affects the hydrothermal synthesis of boehmite. Russ. J. Inorg. Chem. 65(10):1529–1534. doi: 10.1134/S0036023620100149.
  14. Galiev, F. F., I. V. Saikov, M. I. Alymov, S. V. Konovalikhin, N. V. Sachkova, and V. D. Berbentsev. 2021. Composite rods by high-temperature gas extrusion of steel cartridges stuffed with reactive Ni–Al powder compacts:Influence of process parameters. Intermetallics 138:107317. doi: 1016/j.intermet.2021.107317.
  15. Shapkin, N. P., E. K. Papynov, O. O. Shichalin, et al. 2021. Spark plasma sintering-reactive synthesis of SiC and SiC–HfB ceramics based on natural renewable raw materials. Russ. J. Inorg. Chem. 66(5):629–637. doi: 10.1134/S0036023621050168.
  16. Kostikov, V.I., and A. N. Varenkov. 2003. Sverhvysokotemperaturnye kompozitsionnye materialy [Ultra-high temperature composite materials]. Moscow: Intermet Inzhiniring. 506 p.
  17. Ershova, I. O. 2003. 2003. Vliyanie nitridov tugoplavkikh metallov na svoystva spechennogo vol’frama i molibdena [The effect of high-melting point metal nitrides on the properties of sintered molybdenum and tungsten]. Metallovedenie i termicheskaya obrabotka metallov [Metal Science and Heat Treatment of Metals] 2:26–30.
  18. Andrievski, R. A. 2017. High-melting-point compounds: New approaches and new results. Phys. Usp. 60(3):276–289. doi: 10.3367/UFNe.2016.09.037972.
  19. Kablov, E. N., I. L. Svetlov, A. V. Neiman, P. G. Min, F. N. Karachevtsev, and M. I. Karpov. 2017. High-temperature composites based on the Nb–Si system reinforced with niobium silicides. Inorganic Materials Applied Research 8(4):609–617.
  20. Myachin, Y. V., E. A. Darenskaya, O. Y. Vaylina, S. P. Buyakova, S. N. Kulkov, and I. V. Turuntaev. 2017. Structure and properties of steel produced by metal injection molding. Inorgetic Materials Applied Research 8(2):331–334.
  21. Varchanis, S., G. Makrigiorgos, P. Moschopoulos, Y. Dimakopoulos, and J. Tsamopoulos. 2019. Modelling the rheology of thixotropic elasto-visco-plastic materials. J. Rheol. 63:609–639. doi: 10.1122/8.0000196.
  22. Atay, H. Y., D. Ai man, H. Jirkov , M. Behulova, and B. Ma ek. 2019. Use of thixoforming as a manufacturing method for metallic composites. Met. Mater. Int. 9. doi: 10.1007/s12540-019-00373-5.
  23. Pavlov, V. P., and G. V. Vinogradov. 1966. Obobshchjonnaya reologicheskaya kharakteristika plastichnykh dispersnykh sistem [Generalized rheological characteristic of plastic disperse systems]. Colloid. J. USSR 28(3):424–429.
  24. Kister, E. G., and L. I. Schegolevsky. 1970. O reologicheskom povedenii vodnykh suspenziy glin pri nagrevanii [On the rheological behavior of aqueous suspensions of clays upon heating]. Dokl. Akad. Nauk 195(1):140–142.
  25. Khil’ko, S. L., E. V. Titov, A. A. Fedoseeva, A. G. Petrenko, and R. A. Fedoseev. 2006. On the possibility of using two models of the viscosity superanomaly effect for analyzing the flow curves of structured disperse systems. Colloid J. 68:106–114.
  26. Stolin, A. M., S. I. Khudyaev, and L. M. Buchatskiy. 1978. K teorii sverhanomalii vyazkosti strukturirovannykh sistem [On the theory of superanomalies in the viscosity of structured systems]. Dokl. Akad. Nauk 243:430–433.
  27. Stolin, A. M., and S. I. Khudyaev. 1981. Obrazovanie prostranstvenno-neodnorodnykh sostoyaniy strukturirovannoy zhidkosti v oblasti sverkhanomalii vyazkosti [Formation of spatially inhomogeneous states of a structured liquid in the region of viscosity superanomaly]. Dokl. Akad. Nauk 260(5):1180–1184.
  28. Stolin, A. M., and V. I. Irzhak. 1993. Strukturno-neodnorodnye rezhimy techeniya v protsesse formovaniya polimernykh volokon [Structurally nonuniform flow regimes in the process of polymer fiber formation]. Polym. Sci. Ser. B 35(7):902–904.
  29. Chinn, R. E. 2016. Powder injection molding of silicon carbide: Processing issues. Metal Powder Report 71(6):460–464.
  30. Aksenenko, A. Y., S. A. Bychkov, V. N. Klimov, N. V. Korobova, F. Y. Tarasov, V. E. Frizen, and S. Y. Shevchenko. 2013. O vliyanii usloviy kristallizatsii na strukturu tiksozagotovok iz liteynykh Al splavov [About influence of crystallization parameters on microstructure of billets from Al-casting alloys for thixocasting]. Metallurgiya mashinostroeniya [Metallurgy Engineering] 2:17–20.
  31. Borisov, V. G. 2016. Tehnologiya proizvodstva fasonnykh izdeliy iz aluuminievykh splavov metodom tiksoformovki. Problemy i resheniya [A technology for production of shaped aluminum alloy components via the thixoforming technique. Problems and solutions. Tehnologiya legkikh splavov [Technology of Light Alloys] 2:71–79.
  32. Decker, R., S. LeBeau, B. Wilson, J. Reagan, N. Moskovich, and B. Bronfin. 2016. Thixomolding at 25 years. Sol. St. Phen. 256:3–8.
  33. Kapranos, P. 2019. Current state of semi-solid net-shape die casting. Metals — Basel 9(12):1301.
  34. Semenov, A. B., T. B. Ngo, and B. I. Semenov. 2019. Thixoforming of hypereutectic AlSi Cu2NiMg automotive pistons. Sol. St. Phen. 285:446–452.
  35. Merzhanov, A. G. 2003. Kontseptsiya razvitiya SVS kak oblasti nauchno-tekhnicheskogo progressa [The concept of SHS development as a field of scientific and technological progress]. Chernogolovka: Territoriya. 368 p.
  36. Stolin, A. M., and P. M. Bazhin. 2014. Manufacture of multipurpose composite and ceramic materials in the combustion regime and high-temperature deformation (SHS extrusion). Theor. Found. Chem. Eng. 48(6):751–763.
  37. Stolin, A. M., P. M. Bazhin, and M. I. Alymov. 2016. Deformation of SHS products under combustion conditions. Inorg. Mater. 52(6):618–624.
  38. Bazhin, P. M., and A. M. Stolin. 2018. Sovremennye napravleniya prakticheskogo ispol’zovaniya vysokotemperaturnogo sdvigovogo deformirovaniya poroshkovykh materialov v tekhnologii SVS [Modern directions of practical use of high-temperature shear deformation of powder materials in SHS technology]. Tehnologicheskoe gorenie [Technological combustion]. Eds. S. M. Aldoshin and M. I. Alymov. Moscow: RAS. 372–394.
  39. Chizhikov, A. P., A. M. Stolin, P. M. Bazhin, and M. I. Alymov. 2019. Production of hollow ceramic rods by SHS extrusion. Dokl. Chem. 484(2):79–81. doi: 10.1134/ S0012500819020083.
  40. Stolin, A. M., L. S. Stel’makh, S. V. Karpov, and M. I. Alymov. 2019. External friction in SHS compaction. Dokl. Chem. 487(2):235–237. doi: 10.1134/ S0012500819080081.
  41. Bazhin, P. M. 2019. Samorasprostranyayushchiysya vysokotemperaturnyy sintez v usloviyakh sdvigovogo vysokotemperaturnogo deformirovaniya dlya polucheniya kompozitsionnykh materialov i izdeliy na osnove tugoplavkikh soedineniy [Self-propagating high-temperature synthesis under high-temperature shear deformation to obtain composite materials and products based on refractory compounds]. Moscow. D.Sc. Diss. 380 p.
  42. Buchatskii, L. M., and A. M. Stolin. 1992. High-temperature rheology of SHS materials. J. Eng. Phys. Thermophys. 63(5):1120–1129.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».