Comparison of the effect of Н2О and СО2 additives on the conversion of methane into synthesis gas
- 作者: Akhunyanov A.R.1, Vlasov P.A.1,2, Smirnov V.N.1, Arutyunov А.V.1, Mikhailov D.I.3, Arutyunov V.S.1
-
隶属关系:
- N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
- National Research Nuclear University MEPhI
- Федеральный исследовательский центр химической физики им. Н. Н. Семёнова Российской академии наук
- 期: 卷 16, 编号 3 (2023)
- 页面: 10-19
- 栏目: Articles
- URL: https://journal-vniispk.ru/2305-9117/article/view/289468
- DOI: https://doi.org/10.30826/CE23160302
- EDN: https://elibrary.ru/GYNLCC
- ID: 289468
如何引用文章
详细
For the first time, detailed kinetic modeling of the behavior of undiluted mixtures of methane with oxygen with СО2 and Н2О additives was carried out taking into account the formation of microheterogeneous soot particles in the temperature range 1500–1800 K at a pressure of bar. The appearance of soot particles was observed for rich mixtures, starting with the equivalence ratio . At the lower limit of the studied temperature range K, a small amount of soot particles (less than 1 %(mass) of C atoms) is formed, and they do not have a significant effect on the other parameters of the reacting system. A noticeable effect of soot particles at K is observed for . This is most clearly manifested in the fact that the temperature profile of the process changes markedly. When water is added, two maxima are observed on it at times of the order of 0.01 and 0.1 s. In the case of CO2 additives, the second maximum is almost not pronounced. A complex temperature profile leads to the appearance of a second maximum concentration of hydroxyl OH radicals at s.
作者简介
Artur Akhunyanov
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: jkratos69@yandex.ru
research scientist
俄罗斯联邦, MoscowPavel Vlasov
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences; National Research Nuclear University MEPhI
Email: iz@chph.ras.ru
Doctor of Science in physics and mathematics, leading research scientist, assistant professor
俄罗斯联邦, Moscow; MoscowVladimir Smirnov
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
Email: vns1951@yandex.ru
Doctor of Science in physics and mathematics, chief research scientist
俄罗斯联邦, MoscowАrtem Arutyunov
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
Email: aarutyunovv@gmail.com
Candidate of Science in physics and mathematics, research scientist
俄罗斯联邦, MoscowDmitrii Mikhailov
Федеральный исследовательский центр химической физики им. Н. Н. Семёнова Российской академии наук
Email: mihalych2006@mail.ru
Candidate of Science in physics and mathematics, research scientist
俄罗斯联邦, MoscowVladimir Arutyunov
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
Email: arutyunov@chph.ras.ru
Doctor of Science in chemistry, professor, head of laboratory
俄罗斯联邦, Москва参考
- Arutyunov, V. S., I. A. Golubeva, O. L. Eliseev, and F. G. Zhagfarov . 2020. Tekhnologiya pererabotki uglevodorodnykh gazov [Technology of processing of hydrocarbon gases]. Moscow: Yurayt. 723 p.
- Arutyunov, V. S. 2022. Hydrogen energy: Significance, sources, problems, and prospects (a review). Petrol. Chem. 62(6):583–593. doi: 10.1134/S0965544122040065.
- Nikitin, A., A. Ozersky, V. Savchenko, I. Sedov, V. Shmelev, and V. Arutyunov. 2019. Matrix conversion of natural gas to syngas: The main parameters of the process and possible applications. Chem. Eng. J. 377:120883. doi: 10.1016/j.cej.2019.01.162.
- Aldoshin, S. M., V. S. Arutyunov, V. I. Savchenko, I. V. Sedov, A. V. Nikitin, and I. G. Fokin . 2021. Physical methods for studying chemical reactions: New non-catalytic methods for processing hydrocarbon gases. Russ. J. Phys. Chem. B 15(3):498–505. doi: 10.1134/ S1990793121030039.
- Savchenko, V. I., Ya. S. Zimin, A. V. Nikitin, I. V. Sedov, and V. S. Arutyunov . 2021. Utilization of CO in non-catalytic dry reforming of C –C hydrocarbons. J. CO Util. 47:101490. doi: 10.1016/j.jcou.2021.101490.
- Savchenko, V. I., A. V. Nikitin, Ya. S. Zimin, A. V. Ozerskii, I. V. Sedov, and V. S. Arutyunov . 2021. Impact of post-flame processes on the hydrogen yield in matrix partial oxidation reformer. Chem. Eng. Res. Des. 175:250–258. doi: 10.1016/j.cherd.2021.09.009.
- Savchenko, V. I., Ya. S. Zimin, E. Busillo, A. V. Nikitin, I. V. Sedov, and V. S. Arutyunov . 2022. Equilibrium composition of products formed by non-catalytic conversion of hydrocarbons. Petrol. Chem. 62(5):515–525. doi: 10.1134/S0965544122050048.
- Agafonov, G. L., P. A. Vlasov, V. N. Smirnov, A. M. Tereza, I. V. Bilera, and Y. A. Kolbanovskii . 2015. Soot formation during the pyrolysis and oxidation of acetylene and ethylene in shock waves. Kinet. Catal. 56(1):12–30. doi: 10.1134/S0023158415010012.
- Akhunyanov, A. R., A. V. Arutyunov, P. A. Vlasov, V. N. Smirnov, and V. S. Arutyunov . 2023. Effect of СО additives on the noncatalytic conversion of natural gas into syngas and hydrogen. Kinet. Catal. 64(2):135–153. doi: 10.1134/S0023158415010012. EDN: UFJTEH.
- Wang, H., X. You, A. V. Joshi, S. G. Davis, A. Laskin, F. Egolfopoulos, and C. K. Law . USC Mech Version II. High temperature combustion reaction model of H /CO/C –C compounds. Available at: https://ignis.usc.edu:80/Mechanisms/USC-Mech%20II/USC_Mech% 20II.htm (accessed August 11, 2023).
- Agafonov, G. L., P. A. Vlasov, I. V. Zhil’tsova, V. N. Smirnov, A. M. Tereza, I. V. Bilera, and Y. A. Kolbanovskii . 2016. Unified kinetic model of soot formation in the pyrolysis and oxidation of aliphatic and aromatic hydrocarbons in shock waves. Kinet. Catal. 57(5):557–572.
- Skjoth-Rasmussen, M. S., P. Glarborg, M. Ostberg, J. T. Johannessen, H. Livbjerg, A. D. Jensen, and T. S. Christensen . 2004. Formation of polycyclic aromatic hydrocarbons and soot in fuel-rich oxidation of methane in a laminar flow reactor. Combust. Flame 136:91–128.
- Richter, H., S. Granata, W. H. Green, and J. B. Howard . 2005. Detailed modeling of PAH and soot formation in a laminar premixed benzene/oxygen/argon low-pressure flame. P. Combust. Inst. 30:1397–1405.
- Frenklach, M., and J. Warnatz. 1987. Detailed modeling of PAH profiles in a sooting low-pressure acetylene flame. Combust. Sci. Technol. 51:265–283.
- Wang, H., E. Dames, B. Sirjean, D. A. Sheen, R. Tangko, and A. Violi. 2010. A high-temperature chemical kinetic model of -alkane (up to -dodecane), cyclohexane, and methyl-, ethyl-, -propyl and -butyl-cyclohexane oxidation at high temperatures. JetSurF Version 2.0. Available at: http://web.stanford.edu/group/haiwanglab/JetSurF/JetSurF2.0/index.html (accessed August 11, 2023).
- Frenklach, M., and A. Mebel. 2020. On the mechanism of soot nucleation. Phys. Chem. Chem. Phys. 22:5314–5331. doi: 10.1039/D0CP00116C.
- Correa, C., H. Niemann, B. Schramm, and J. Warnatz. 2000. Reaction mechanism reduction for higher hydrocarbons by the ILDM method. P. Combust. Inst. 28:1607–1614.
- Hansen, N., S. J. Klippenstein, P. R. Westmoreland, T. Kasper, K. Kohse-Hoinghaus, J. Wang, and T. A. Cool . 2008. A combined ab initio and photoionization mass spectrometric study of polyynes in fuel-rich flames. Phys. Chem. Chem. Phys. 10:366–374.
- Agafonov, G. L., D. I. Mikhailov, V. N. Smirnov, A. M. Tereza, P. A. Vlasov, and I. V. Zhiltsova . 2016. Shock tube and modeling study of chemical ionization in the oxidation of acetylene and methane mixtures. Combust. Sci. Technol. 188(11-12):1815–1830. doi: 10.1080/ 00102202.2016.1211861.
- Vlasov, P. A., I. V. Zhiltsova, V. N. Smirnov, A. M. Tereza, G. L. Agafonov, and D. I. Mikhailov. 2018. Chemical ionization of -hexane, acetylene, and methane behind reflected shock waves. Combust. Sci. Technol. 190(1):57–81. doi: 10.1080/00102202.2017.1374954.
- Vlasov, P. A., A. R. Akhunyanov, and V. N. Smirnov. 2022. Experimental studies and simulation of methane pyrolysis and oxidation in reflected shock waves accompanied by soot formation. Kinet. Catal. 63(2):141–156. doi: 10.1134/S0023158422020124.
补充文件
