A MODEL OF HIGH–SPEED INTERACTION IN THE «STRIKING ELEMENT – BARRIER» SYSTEM
- Autores: Godunov A.I.1, Suzdaltsev P.S.2, Kuzin N.A.3
-
Afiliações:
- Penza State University
- Branch of the Military Academy of Logistics named after Army General A.V. Khrulev in Penza
- Moscow Road Institute (Technical University)
- Edição: Nº 2 (2025)
- Páginas: 26-33
- Seção: FUNDAMENTALS OF RELIABILITY AND QUALITY ISSUES
- URL: https://journal-vniispk.ru/2307-4205/article/view/294724
- DOI: https://doi.org/10.21685/2307-4205-2025-2-3
- ID: 294724
Citar
Texto integral
Resumo
Background. In modern conditions, the development of mathematical models plays a key role in the research and design of technical systems. The creation of adequate models makes it possible to increase the accuracy of predicting the behavior of objects and optimize their characteristics. Materials and methods. The paper builds a mathematical model of the object under study using modern computational methods. Numerical calculation methods and software for modeling dynamic processes are used. Results. The developed model makes it possible to analyze the main parameters of the system, determine its dynamic characteristics and the influence of external factors on the behavior of the object under study. Conclusions. The proposed approach to mathematical modeling ensures high accuracy and reliability of the results, which can be useful in the development and improvement of technical systems.
Palavras-chave
Sobre autores
Anatoly Godunov
Penza State University
Autor responsável pela correspondência
Email: avitelpgu@mail.ru
Doctor of technical sciences, professor, honored scientist of the Russian Federation, professor of the sub-department of automation and telemechanics
(40 Krasnaya strееt, Penza, Russia)Pavel Suzdaltsev
Branch of the Military Academy of Logistics named after Army General A.V. Khrulev in Penza
Email: Suzdal.1990@bk.ru
Adjunct
(Military town, Penza, Russia)Nikolai Kuzin
Moscow Road Institute (Technical University)
Email: sputnik1985nk3y@mail.ru
Student
(64 Leningradsky avenue, Moscow, Russia)Bibliografia
- LS-DYNA Theory Mnual. Livermore: LSTC, 2019:686.
- Babkin A.V., Selivanov V.V. Mekhanika razrusheniya deformiruemogo tela = Mechanics of destruction of a deformable body. Moscow: Izd-vo MGTU im. N.E. Baumana, 2005:424. (In Russ.)
- Cai S., Feng J., Xu H. et al. The concentration of deformation caused by the closed end contributes to the destruction of the sleeve in the lower part[J]. Defence Technology. 2020;16(6):1151–1159.
- Basov K.A. ANSYS spravochnik pol'zovatelya = ANSYS user's guide. Moscow: Izd-vo DMK-Press, 2005:640. (In Russ.)
- Babkin A.V., Kolpakov V.N., Okhitin V.N. et al. Chislennye metody v zadachakh fiziki bystroprotekayushchikh protsessov = Numerical methods in problems of physics of fast-flowing processes. Moscow: Izd-vo MGTU im. N.E. Baumana, 2005:518. (In Russ.)
- Veldanov V.A. Prikladnaya teoriya udara = Applied theory of impact. Moscow: Izd-vo MGTU im. N.E. Baumana, 2016:44. (In Russ.)
- Gallager R.M. Metod konechnykh elementov. Osnovy: per. s angl. = The finite element method. Fundamentals : translated from English. Moscow: Mir, 1984:428. (In Russ.)
- Gerasimov A.V. Vysokoskorostnoy udar. Modelirovanie i eksperiment = High-speed impact. Modeling and experiment. Tomsk: NTL, 2016:568. (In Russ.)
- Zarubin V.S., Selivanov V.V. Variatsionnye i chislennye metody mekhaniki sploshnoy sredy = Variational and numerical methods of continuum mechanics. Moscow: Izd-vo MGTU im. N.E. Baumana, 1993:508. (In Russ.)
- Zenkevich O.V., Chang I. Metod konechnykh elementov v teorii sooruzheniy i v mekhanike sploshnykh sred = The finite element method in the theory of structures and in continuum mechanics. Moscow: Mir, 1974:239. (In Russ.)
Arquivos suplementares
