Modernization of the technology for assessing the professionalism and the level of competence of teachers based on the analysis of students’ learning results
- Authors: Mozgova D.A.1, Zamyatina O.M.1,2, Semenova N.A.1, Pozdeeva S.I.1
-
Affiliations:
- Tomsk State Pedagogical University
- National Research Tomsk Polytechnic University
- Issue: No 1 (2023)
- Pages: 18-32
- Section: TEACHER PROFESSIONAL DEVELOPMENT
- URL: https://journal-vniispk.ru/2307-6127/article/view/269221
- DOI: https://doi.org/10.23951/2307-6127-2023-1-18-32
- ID: 269221
Cite item
Full Text
Abstract
About the authors
Darya Andreyevna Mozgova
Tomsk State Pedagogical University
Email: mozgovadarya@bk.ru
ul. Kiyevskaya, 60, Tomsk, Russian Federation, 634061
Oksana Mikhaylovna Zamyatina
Tomsk State Pedagogical University; National Research Tomsk Polytechnic University
Email: zamyatina@tpu.ru
ul. Kiyevskaya, 60, Tomsk, Russian Federation, 634061; pr. Lenina, 30, Tomsk, Russian Federation, 634050
Nataliya Albertovna Semenova
Tomsk State Pedagogical University
Email: natalsem@rambler.ru
ul. Kiyevskaya, 60, Tomsk, Russian Federation, 634061
Svetlana Ivanovna Pozdeeva
Tomsk State Pedagogical University
Email: svetapozd@mail.ru
ul. Kiyevskaya, 60, Tomsk, Russian Federation, 634061
References
- Сагитов С. Т., Дорофеев А. В., Мустаев А. Ф., Калимуллина Г. И. Структурно-функциональная модель единого образовательного пространства развития профессиональных компетенций педагога // Педагогика и просвещение. 2022. № 1. С. 103–115.
- Алтыникова Н. В., Дорофеев А. В., Музаев А. А., Сагитов С. Т. Управление качеством педагогического образования на основе диагностики профессиональных дефицитов учителя // Психологическая наука и образование. 2022. Т. 27, № 1.
- Лескина И. Н. Модель организации управления эффективностью профессиональной деятельности педагога на основе работы с большими данными // Человек и образование. 2021. № 4 (69).
- Пеша А. В., Шавровская М. Н., Николаева М. А. Ассессмент-центр компетенций онлайн: возможности и методология // Вестник ОмГУ. Серия: Экономика. 2021. № 2.
- Мухамедьярова Н. А., Богачев А. Н. Формирование и оценка уровня сформированности метапредметных компетенций педагога // Вестник ЮУрГГПУ. 2021. № 3 (163).
- Шарафутдинова Д. Р. Автоматизация процесса оценки профессиональных компетенций педагога по профессиональному стандарту // Вестник УГНТУ. Наука, образование, экономика. Серия: Экономика. 2020. № 1 (31).
- Арстангалеева Г. Ф., Тезина М. Н., Слободчикова С. М. Оценка сформированности цифровых компетенций педагогических работников // Отечественная и зарубежная педагогика. 2022. Т. 1, № 3 (84). С. 140–155.
- Гаркавая Д. И., Жилякова М. Н. Автоматизированное тестирование компетенций педагогов в рамках внутренней системы оценки качества образования дополнительного профессионального образования // Вестник Белгородского ин-та развития образования. 2020. Т. 7, № 3 (17). С. 131–145.
- Заир-Бек С. И., Анчиков К. М. Школьные учителя в изменяющихся условиях: адаптивность и готовность к инновациям: информационный бюллетень. М.: НИУ ВШЭ, 2022. 44 с.
- Темняткина О. В., Токменинова Д. В. Модели оценки эффективности работы педагогов, используемые в зарубежных странах // Перспективы науки и образования. 2019. № 3 (39). С. 489–499.
- Резильентность. Оценка по модели PISA-2020 // Федеральный институт оценки качества образования. URL: https://fioco.ru/Media/Default/Documents/Резильентность%202020.pdf (дата обращения: 30.08.2021).
- Мозгова Д. А., Замятина О. М., Семенова Н. А., Куровская Л. В. Диагностика профессиональных дефицитов и компетенции педагогов общего образования: кластерный анализ // Вестник Томского гос. ун-та. 2021. № 472. С. 189–196.
- Шамрик Д. Л. Базовые методы восстановления пропусков в массивах данных // Информационные технологии в науке и производстве: материалы V Всерос. молодежной научно-техн. конф. 2018. С. 73– 83.
- Ким Дж.-О., Мьюллер Ч. У., Клекка У. Р. Факторный, дискриминантный и кластерный анализ / пер. с англ.; под ред. И. С. Енюкова. М.: Финансы и статистика, 1989. 215 с.
- Пестунов И. А., Рылов С. А., Бериков В. Б. Иерархические алгоритмы кластеризации для сегментации мультиспектральных изображений // Автометрия. 2015. Т. 51, № 4. С. 12–22.
- Кокорева Я. В., Макаров А. А. Поэтапный процесс кластерного анализа данных на основе алгоритма кластеризации k-means // Молодой ученый. 2015. № 13 (93). С. 126–128. URL: https://moluch.ru/archive/93/20759/ (дата обращения: 06.09.2021).
- Герасименко Е. М. Интеллектуальный анализ данных. Алгоритмы Data Mining: учеб. пособие. Ростов-на-Дону; Таганрог: Изд-во Южного федерального ун-та, 2017.
- Ulrike von Luxburg A Tutorial on Spectral Clustering // Statistics and Computing. 2007. № 17 (4).
- Шитиков В. К., Мастицкий С. Э. Классификация, регрессия, алгоритмы Data Mining с использованием R. 2017. URL: https://github.com/ranalytics/data-mining. (дата обращения: 30.08.2021).
- Calinski R. B., Harabasz J. A dendrite method for cluster analysis // Communications in Statistics. 1974. № 3. Р. 1–27.
- Etienne Becht, Charles-Antoine Dutertre, Immanuel W.H. Kwok, Lai Guan Ng, Florent Ginhoux, Evan W. Newell. Evaluation of UMAP as an alternative to t-SNE for single-cell data // bioRxiv. 2018.
Supplementary files
