Evaluation of in vitro viability and pollen morphology of asparagus vigna (Vigna unguiculata) accessions during introduction in the south of Western Siberia

Cover Page

Cite item

Full Text

Abstract

Background. Vigna is a new for Russia vegetable crop with high heat requirements, which prevents the expansion of its cultivation in regions with a continental climate. Based on the selection of the optimal concentration of the osmotically active substance (sucrose, PEG 6000), the relationship between pollen germination of vignaaccessions in vitro at optimal (25°) and low (6°) temperatures and its morphometric parameters was assessed. Materials and methods. The morphometric features and response of microgametophytes of 8 Vigna unguiculata accessions to low temperature in vitro were studied. The optimal concentration of the osmotically active substance (sucrose, PEG 6000) was determined at different concentrations in the medium (10, 20, 30 %). A Hitachi TM 4000 plus SEM was used for pollen grain morphometry. Results. According to the criterion of minimal variation of pollen germination in sucrose and PEG 6000 solutions (53 % versus 60–147 %) with a fairly high germination rate for most accessions (6.2–27.4 %), the best result was shown by PEG 6000 at a 20 % concentration with the addition of boric acid (0.006 %). According to the cold resistance of pollen in vitro at a temperature of 6°, pollen of k-36 and Krasnaya pozdnyaya accessions stood out with an indicator of 52.0 and 53.5 %, respectively, whereas pollen of the cv. Yunnanskaya did not germinate under these conditions. Pollen of five vigna cvs. is three-lobed, large, almost round in the projection of the polar axis and round in the equatorial plane. The surface of the exine has numerous grooves, the surface texture is coarsely meshed. The length of the p.z. polar axis 63.0–76.5 μm, the equatorial diameter is 57.2–66.3 μm and varies significantly among different vignaaccessions. The largest pollen was found in the cv. Yunnanskaya (76.5×65.2 μm), while the cv. Grafinya had a comparatively small pollen (63.0×57.2 μm). Conclusions. The optimal medium for pollen germination was a medium with 20 % PEG 6000 + 0.006 % boric acid. In pollen germination experiments at 25° and 6°, cold resistance negatively correlated with the polar axis length (r = –0.603 – –0.683) and the equatorial diameter (r = –0.375 – –0.549).

About the authors

Jiaping Sun

Novosibirsk State University

Author for correspondence.
Email: t.sunl@g.nsu.ru

Postgraduate student

(1 Pirogova street, Novosibirsk, Russia)

Yury V. Fotev

Central Siberian Botanic Garden SB RAS; Novosibirsk State Agrarian University

Email: fotev_2009@mail.ru

Candidate of agricultural sciences, senior researcher; associate professor of the sub-department of plant growing and fodder production

(101 Zolotodolinskaya street, Novosibirsk, Russia); (160 Dobrolubova street, Novosibirsk, Russia)

References

  1. Herniter I.A., Close T.J. Genetic, textual, and archeological evidence of the historical global spread of cowpea (Vigna unguiculata [L.] Walp.). Legume Science. 2020;2(4): e57. doi: 10.1002/leg3.57
  2. Nielsen S.S., Brandt W.E., Singh B.B. Genetic Variability for Nutritional Composition and Cooking Time of Improved Cowpea Lines. Crop Science. 1993;33(3):469–472. doi: 10.2135/cropsci1993.0011183x003300030010x
  3. Wu J. et al. Genome-wide association analysis of rust resistance in cowpea. Journal of Plant Genetic Resources. 2024;25(11):1907–1922. doi: 10.13430/j.cnki.jpgr.20240217002
  4. Fotev Yu.V., Pivovarov V.F., Artem'eva A.M. The concept of creating a Russian national system of functional food products. Vavilovskiy zhurnal genetiki i selektsii = Vavilov journal of genetics and selection. 2018;22(7):776–783. (In Russ.). doi: 10.18699/ VJ18.421
  5. Melo N.F. et al. Optimal temperature for germination and seedling development of cowpea seeds. Revista Colombiana de Ciencias Hortícolas. 2020;14(2):231–239. doi: 10.17584/rcch.2020v14i2.10339
  6. Fotev Yu.V. Source material for breeding tomato with resistance to stress temperatures and diseases. Metodicheskie ukazaniya po gametnoy selektsii rasteniy (metodologiya, rezul'taty i perspektivy) = Guidelines for gamete selection of plants (methodology, results and prospects). Moscow: GNU VNIISSOK, 2001:224–238.
  7. Luk'yanchik I.D., Lomakova O.O. Gamete selection methods for assessing cold resistance of some tomato varieties. Kletochnaya biologiya i biotekhnologiya rasteniy: sb. nauch. tr. Mezhdunar. nauch.-prakt. konf. = Cell biology and plant biotechnology: proceedings of the International scientific and practical conference. Moscow, 2013:100. (In Russ.)
  8. Fotev Y.V. Assessment of cold resistance in Momordica charantia L. accessions according to pollen germination at low temperatures in vitro. Proceedings on applied botany, genetics and breeding. 2022;183(3):39–47. doi: 10.30901/2227-8834-2022-3-39-47
  9. Steuter A.A., Mozafar A., Goodin J.R. Water potential of aqueous polyethylene glycol. Plant physiology. 1981;67(1):64–67. doi: 10.30901/2227-8834-2022-3-39-47
  10. Somers J., Nelms B. The sporophyte-to-gametophyte transition: The haploid generation comes of age. Current Opinion in Plant Biology. 2023;75:102416. doi: 10.1016/ j.pbi.2023.102416
  11. Mulcahy D.L., Sari-Gorla M., Mulcahy G.B. Pollen selection – past, present and future. Sexual Plant Reproduction. 1996;9:353–356. doi: 10.1007/BF02441955
  12. Lee J.Y., Lee D.H. Use of serial analysis of gene expression technology to reveal changes in gene expression in Arabidopsis pollen undergoing cold stress. Plant Physiology. 2003;132(2):517–529. doi: 10.1104/pp.103.020511
  13. Maréchal R. Etude taxonomique d'un groupecomplexed'espèces des genres Phaseolus et Vigna (Papilionaceae) sur la base de données morphologiques et polliniques, traitées par l'analyseinformatique. Boissiera. 1978;28:1–273. doi: 10.1080/00837792.1984.10670306
  14. Umdale S.D., Aitawade M.M., Gaikwad N. et al. Pollen morphology of Asian Vigna species (genus Vigna; subgenus Ceratotropis) from India and its taxonomic implications. Turkish Journal of Botany. 2017;41(1):75–87. doi: 10.3906/bot-1603-31
  15. Pavlova A.M. Vigna. Kul'turnaya flora SSSR. Zernovye bobovye = Cultivated flora of the USSR. Grain legumes. Moscow: Gosudarstvennoe izdatel'stvo sovkhoznoy i kolkhoznoy literatury, 1937;4:621–646. (In Russ.)
  16. Pavlova A.M. Vigna is the bean’s sister. Zernobobovye kul'tury = . 1964;1:16–18. (In Russ.)
  17. Vishnyakova M.A. Species diversity of the collection of genetic resources of grain legumes VYR and its use in domestic breeding (review). Trudy po prikladnoy botanike, genetike i selektsii = Works on applied botany, genetics and selection. 2019;180(2):109–123. (In Russ.). doi: 10.30901/2227-8834-2019-2-109-123
  18. Mog B., Veena G.L., Adiga J.D. et al. Pollen morphological study and temperature effect on the pollen germination of cashew (Anacardium occidentale L.) varieties. Scientia Horticulturae. 2023;314:111957. doi: 10.1016/j.scienta.2023.111957
  19. Dong R. et al. Scanning electron microscopy observations of pollen morphology in common vetch (Vicia sativa) subspecies. The Journal of Agricultural Science. 2020;158(8-9):646–659. doi: 10.1017/S0021859620001033
  20. Bahadur S. et al. Identification of monocot flora using pollen features through scanning electron microscopy. Microscopy Research Technique. 2018;81(6):599–613. doi: 10.1002/jemt.23015
  21. Khaleghi E., Karamnezhad F., Moallemi N. Study of pollen morphology and salinity effect on the pollen grains of four olive (Olea europaea) cultivars. South African Journal of Botany. 2019;127:51–57. doi: 10.1016/j.sajb.2019.08.031
  22. Callum B., Chang S.M. Pollen competition in style: Effects of pollen size on siring success in the hermaphroditic common morning glory, Ipomoea purpurea. American Journal of Botany. 2016;103(3):460–470. doi: 10.3732/ajb.1500211
  23. Kolyasnikova N.L. The role of reproductive biology in solving the problem of increasing seed productivity of forage legumes. Permskiy agrarnyy vestnik = Perm Agrarian Bulletin. 2015;4(12):60–64. (In Russ.). doi: 633.32:631.559
  24. Mazer S.J. et al. Winning in style: Longer styles receive more pollen, but style length does not affect pollen attrition in wild Clarkia populations. American Journal of Botany. 2016;103(3):408–422. doi: 10.3732/ajb.1500192
  25. Khanna V.K. Studies on hybridization and genetic diversity in cowpea (Vigna unguiculata L.). Open Access Journal of Oncology and Medicine. 2018;2(1):1–10. doi: 10.32474/OAJOM.2018.02.000132
  26. Jiang Y. et al. Seed set, pollen morphology and pollen surface composition response to heat stress in field pea. Plant, cell & environment. 2015;38(11):2387–2397. doi: 10.1111/pce.12589
  27. Tsatsenko L.V., Sinel'nikova A.S. Pollen analysis in plant breeding. Politematicheskiy setevoy elektronnyy nauchnyy zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta = Polythematic online electronic scientific journal of the Kuban State Agrarian University. 2012;(77):38–48. (In Russ.). doi: 57.088.1:581.331.2:633/ 635(076)
  28. Kupriyanova A.B., Aleshina L.A. Pyl'tsa i spory rasteniy flory Evropeyskoy chasti SSSR: rukovodstvo = Pollen and spores of plants of the flora of the European part of the USSR: a guide. Leningrad: Nauka, 1972:171. (In Russ.)
  29. Halbritter H., Ulrich S., Grímsson F. Illustrated Pollen Terminology. Sham: Springer, 2018:483.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».