Antimicrobial activity study of new quinazolin-4(3h)-ones against Staphylococcus aureus and Streptococcus pneumoniae

Cover Page

Cite item

Abstract

Received 08 Jan 2021 Accepted 29 Aug 2021

Quinazolin-4(3H)-one derivatives exhibiting a wide spectrum of a pharmacological activity, represent a promising class of substances used to obtain antibacterial agents, which is especially important in the context of the emergence of pathogenic microorganisms’ resistance to drugs used in medicine. It has been proved that compounds having a naphthyl radical in the molecule, as well as an amide group bound to the benzene ring as quinazolinone substituents, are characterized by a pronounced antimicrobial activity against Staphylococcus aureus and Streptococcus pneumoniae.

The aim of the research is a primary microbiological screening of the in vitro antimicrobial activity of new quinazolin-4(3H)-one derivatives against Staphylococcus aureus and Streptococcus pneumoniae, as well as the assessment of the relationship between the pharmacological effect and the structural transformation of the substance molecule, lipophilicity and the possibility of forming resistance to them.

Materials and methods. The experimental studies have been carried out using well-known nosocomial pathogens of infectious and inflammatory diseases Staphylococcus aureus and Streptococcus pneumoniae by a serial dilution method.

Results. A compound containing a naphthyl radical in its structure, which contributes to an increase in the hydrophobicity of the substance and its solubility in the membrane of a bacterial cell, has a bacteriostatic effect against both Staphylococcus aureus and Streptococcus pneumoniae. A similar pharmacological effect is exhibited by a derivative with an amide group as a substituent of the quinazolinone nucleus linked to a phenyl radical, which probably contributes to an increase in the degree of binding to active sites of enzymes involved in the DNA replication, and protein synthesis. Obviously, the increased lipophilicity, which promotes better binding to the efflux protein, cannot serve as objective characteristics of the emergence possibility of the pathogen’s resistance to this substance.

Conclusion. Among the synthesized compounds, the leading substances that exhibit an antimicrobial activity against Staphylococcus aureus and Streptococcus pneumonia, have been identified. The assessment of the chemical structure made it possible to substantiate their pharmacological action and draw conclusions about the possibility of developing resistance to it in microbial cells.

About the authors

Marina A. Samotrueva

Аstrakhan State Medical University

Email: ms1506@mail.ru
ORCID iD: 0000-0001-5336-4455

Doctor of Sciences (Medicine), Professor, Head of the Department of Pharmacognosy, Pharmaceutical Technology and Biotechnology

Russian Federation, 121, Bakinskaya Str., Astrakhan, Russia, 414000

Alexander A. Ozerov

Volgograd State Medical University; Volgograd Medical Research Center

Email: prof_ozerov@yahoo.com
ORCID iD: 0000-0002-4721-0959

Doctor of Sciences (Chemistry), Professor, Head of the Department of Pharmaceutical and Toxicological Chemistry

Russian Federation, 1, Pavshikh Bortsov Sq., Volgograd, Russia, 400131; 1, Pavshikh Bortsov Sq., Volgograd, Russia, 400131

Alla A. Starikova

Аstrakhan State Medical University

Author for correspondence.
Email: alhimik.83@mail.ru
ORCID iD: 0000-0002-5210-5248

Assistant, Department of Chemistry, Faculty of Pharmacy

Russian Federation, 121, Bakinskaya Str., Astrakhan, Russia, 414000

Narmina Mutallimaga-kyzy Gabitova

Astrakhan State Medical University; Scientific Research Institute for the Study of Leprosy

Email: narmina85@inbox.ru
ORCID iD: 0000-0002-3867-8330

Assistant, Department of Pharmacognosy, Pharmaceutical Technology and Biotechnology; Junior Researcher

Russian Federation, 121, Bakinskaya Str., Astrakhan, Russia, 414000; 3, Nikolay Ostrovsky Ave., Astrakhan, Russia, 414057

Daria V. Merezhkina

Volgograd State Medical University

Email: merezhkinad@mail.ru
ORCID iD: 0000-0002-9848-7149

Postgraduate student, Department of Pharmaceutical and Toxicological Chemistry

Russian Federation, 1, Pavshikh Bortsov Sq., Volgograd, Russia, 400131

Alexandra A. Tsibizova

Аstrakhan State Medical University

Email: sasha3633@yandex.ru
ORCID iD: 0000-0002-9994-4751

Candidate of Sciences (Pharmacy), Associate Professor, Department of Pharmacognosy, Pharmaceutical Technology and Biotechnology

Russian Federation, 121, Bakinskaya Str., Astrakhan, Russia, 414000

Ivan N. Tyurenkov

Volgograd State Medical University; Volgograd Medical Research Center

Email: fibfuv@mail.ru
ORCID iD: 0000-0001-7574-3923

Doctor of Sciences (Medicine), Professor, Corresponding Member of the Russian Academy of Sciences, Head of the Department of Pharmacology and Pharmacy of the Institute of Continuous Medical and Pharmaceutical Education, the Faculty of Advanced Training of Physicians

Russian Federation, 1, Pavshikh Bortsov Sq., Volgograd, Russia, 400131; 1, Pavshikh Bortsov Sq., Volgograd, Russia, 400131

References

  1. Abrusán G, Marsh JA. Ligands and Receptors with Broad Binding Capabilities Have Common Structural Characteristics: An Antibiotic Design Perspective. J Med Chem. 2019 Nov 14;62(21):9357–74. doi: 10.1021/acs.jmedchem.9b00220.
  2. Beyzaei H, Ghasemi B. In vitro Antibacterial evaluation of newly synthesized heterocyclic compounds against Streptococcus Pneumoniae. Journal of Sciences, Islamic Republic of Iran. 2018; 29(3):211–20. doi: 10.22059/JSCIENCES.2018.67436.
  3. Tsibizova AA, Yasenyavskaya AL, Ozerov AA, Samotrueva MA, Tyurenkov IN. Acute toxicity assessment a new pyrimidine derivative. Astrakhan medical journal. 2021;16(1):82–87. doi: 10.17021/2021.16.1.82.87. Russian
  4. Jampilek J. Heterocycles in Medicinal Chemistry. Molecules. 2019 Oct 25;24(21):3839. doi: 10.3390/molecules24213839.
  5. Patel PR, Joshi H, Shah U, Bapna M, Patel B. New generation of quinazolinone derivatives as potent antimicrobial agents. Asian Pac J Health Sci. 2021;8(2):61–6. doi: 10.21276/apjhs.2021.8.2.12.
  6. Etebu E, Arikekpar I. Antibiotics: Classification and mechanisms of action with emphasis on molecular perspectives. Int. J. Appl. Microbiol. Biotechnol.Res. 2016;4:90–101.
  7. Alanazi AM, Abdel-Aziz AA, Shawer TZ, Ayyad RR, Al-Obaid AM, Al-Agamy MH, Maarouf AR, El-Azab AS. Synthesis, antitumor and antimicrobial activity of some new 6-methyl-3-phenyl-4(3H)-quinazolinone analogues: in silico studies. J Enzyme Inhib Med Chem. 2016 Oct;31(5):721–35. doi: 10.3109/14756366.2015.1060482.
  8. El-Sayed NNE, Al-Otaibi TM, Alonazi M, Masand VH, Barakat A, Almarhoon ZM, Ben Bacha A. Synthesis and Characterization of Some New Quinoxalin-2(1H)-one and 2-Methyl-3H-quinazolin-4-one Derivatives Targeting the Onset and Progression of CRC with SRA, Molecular Docking, and ADMET Analyses. Molecules. 2021 May 23;26(11):3121. doi: 10.3390/molecules26113121.
  9. Hassan KA, Liu Q, Elbourne LDH, Ahmad I, Sharples D, Naidu V, Chan CL, Li L, Harborne SPD, Pokhrel A, Postis VLG, Goldman A, Henderson PJF, Paulsen IT. Pacing across the membrane: the novel PACE family of efflux pumps is widespread in Gram-negative pathogens. Res Microbiol. 2018 Sep–Oct;169(7–8):450–4. doi: 10.1016/j.resmic.2018.01.001.
  10. Vila J, Moreno-Morales J, Ballesté-Delpierre C. Current landscape in the discovery of novel antibacterial agents. Clin Microbiol Infect. 2020 May;26(5):596–603. doi: 10.1016/j.cmi.2019.09.015.
  11. Nagaraja V, Godbole AA, Henderson SR, Maxwell A. DNA topoisomerase I and DNA gyrase as targets for TB therapy. Drug Discovery Today. 2017;22(3):510–8. doi: 10.1016/j.drudis.2016.11.006.
  12. D’Atanasio N, Capezzone de Joannon A, Di Sante L, Mangano G, Ombrato R, Vitiello M, Bartella C, Magarò G, Prati F, Milanese C, Vignaroli C, Di Giorgio FP, Tongiani S. Antibacterial activity of novel dual bacterial DNA type II topoisomerase inhibitors. PLoS One. 2020 Feb 19;15(2):e0228509. doi: 10.1371/journal.pone.0228509.
  13. Karaman R, Jubeh B, Breijyeh Z. Resistance of Gram-Positive Bacteria to Current Antibacterial Agents and Overcoming Approaches. Molecules. 2020 Jun 23;25(12):2888. doi: 10.3390/molecules25122888.
  14. Lepak AJ, Seiler P, Surivet JP, Ritz D, Kohl C, Andes DR. In Vivo Pharmacodynamic Target Investigation of Two Bacterial Topoisomerase Inhibitors, ACT-387042 and ACT-292706, in the Neutropenic Murine Thigh Model against Streptococcus pneumoniae and Staphylococcus aureus. Antimicrob Agents Chemother. 2016 May 23;60(6):3626–32. doi: 10.1128/AAC.00363-16.
  15. Li L, Wang Q, Zhang H, Yang M, Khan MI, Zhou X. Sensor histidine kinase is a β-lactam receptor and induces resistance to β-lactam antibiotics. Proc Natl Acad Sci U S A. 2016 Feb 9;113(6):1648–53. doi: 10.1073/pnas.1520300113.
  16. Qiao Y, Srisuknimit V, Rubino F, Schaefer K, Ruiz N, Walker S, Kahne D. Lipid II overproduction allows direct assay of transpeptidase inhibition by β-lactams. Nat Chem Biol. 2017 Jul;13(7):793–8. doi: 10.1038/nchembio.2388.
  17. Janardhanan J, Bouley R, Martínez-Caballero S, Peng Z, Batuecas-Mordillo M, Meisel JE, Ding D, Schroeder VA, Wolter WR, Mahasenan KV, Hermoso JA, Mobashery S, Chang M. The Quinazolinone Allosteric Inhibitor of PBP 2a Synergizes with Piperacillin and Tazobactam against Methicillin-Resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2019 Apr 25;63(5):e02637–18. doi: 10.1128/AAC.02637-18.
  18. Liu J, Chen D, Peters BM, Li L, Li B, Xu Z, Shirliff ME. Staphylococcal chromosomal cassettes mec (SCCmec): A mobile genetic element in methicillin-resistant Staphylococcus aureus. Microb Pathog. 2016 Dec;101:56–67. doi: 10.1016/j.micpath.2016.10.028.
  19. Cai ZQ, Jin ZS, Zheng DQ, Hou L, Huang GW, Tian JQ, Wang GJ. Synthesis of several new quinazolin-4-amines containing p-toluenesulfonate moiety. Journal of chemical research. 2016;40:573–5. doi: 10.3184/174751916X14725679922221.
  20. Khan I, Zaib S, Batool S, Abbas N, Ashraf Z, Iqbal J, Saeed A. Quinazolines and quinazolinones as ubiquitous structural fragments in medicinal chemistry: An update on the development of synthetic methods and pharmacological diversification. Bioorg Med Chem. 2016 Jun 1;24(11):2361–81. doi: 10.1016/j.bmc.2016.03.031.
  21. Badshah SL, Ullah A. New developments in non-quinolone-based antibiotics for the inhibiton of bacterial gyrase and topoisomerase IV. Eur J Med Chem. 2018 May 25;152:393–400. doi: 10.1016/j.ejmech.2018.04.059.
  22. Qian Y, Allegretta G, Janardhanan J, Peng Z, Mahasenan KV, Lastochkin E, Gozun MMN, Tejera S, Schroeder VA, Wolter WR, Feltzer R, Mobashery S, Chang M. Exploration of the Structural Space in 4(3H)-Quinazolinone Antibacterials. J Med Chem. 2020 May 28;63(10):5287–5296. doi: 10.1021/acs.jmedchem.0c00153.
  23. Masri A, Anwar A, Khan NA, Shahbaz MS, Khan KM, Shahabuddin S, Siddiqui R. Antibacterial Effects of Quinazolin-4(3H)-One Functionalized-Conjugated Silver Nanoparticles. Antibiotics (Basel). 2019 Oct 9;8(4):179. doi: 10.3390/antibiotics8040179.
  24. Bouley R, Ding D, Peng Z, Bastian M, Lastochkin E, Song W, Suckow MA, Schroeder VA, Wolter WR, Mobashery S, Chang M. Structure-Activity Relationship for the 4(3H)-Quinazolinone Antibacterials. J Med Chem. 2016 May 26;59(10):5011–21. doi: 10.1021/acs.jmedchem.6b00372.
  25. Nakano S, Fujisawa T, Ito Y, Chang B, Matsumura Y, Yamamoto M, Suga S, Ohnishi M, Nagao M. Penicillin-Binding Protein Typing, Antibiotic Resistance Gene Identification, and Molecular Phylogenetic Analysis of Meropenem-Resistant Streptococcus pneumoniae Serotype 19A-CC3111 Strains in Japan. Antimicrob Agents Chemother. 2019 Aug 23;63(9):e00711–19. doi: 10.1128/AAC.00711-19.
  26. Brouwers R, Vass H, Dawson A, Squires T, Tavaddod S, Allen RJ. Stability of β-lactam antibiotics in bacterial growth media. PLoS One. 2020 Jul 20;15(7):e0236198. doi: 10.1371/journal.pone.0236198.
  27. Marco L, Liliana G, Anna B, Annarita M. Intrinsic role of coagulase negative staphylococci norA-like efflux system in fluoroquinolones resistance. AIMS Microbiol. 2017 Nov 14;3(4):908–914. doi: 10.3934/microbiol.2017.4.908.
  28. Ankireddy AR, Rambabu G, Balaraju T, Banothu V, Gundla PL, Addepally U, Mantipally M. Synthesis, characterization and antibacterial activity of some novel C-7-Substituted-2-morpholino-N-(pyridin-2-ylmethyl)quinazolin-4-amine derivatives. Der PharmaChemica. 2018;10(11):40–8.
  29. Ghorab MM, Alqahtani AS, Soliman AM, Askar AA. Novel N-(Substituted) Thioacetamide Quinazolinone Benzenesulfonamides as Antimicrobial Agents. Int J Nanomedicine. 2020 May 5;15:3161–80. doi: 10.2147/IJN.S241433.
  30. De Rosa M, Verdino A, Soriente A, Marabotti A. The Odd Couple(s): An Overview of Beta-Lactam Antibiotics Bearing More Than One Pharmacophoric Group. Int J Mol Sci. 2021 Jan 9;22(2):617. doi: 10.3390/ijms22020617.
  31. Kahlmeter G, Brown DF, Goldstein FW, MacGowan AP, Mouton JW, Odenholt I, Rodloff A, Soussy CJ, Steinbakk M, Soriano F, Stetsiouk O. European Committee on Antimicrobial Susceptibility Testing (EUCAST) Technical Notes on antimicrobial susceptibility testing. Clin Microbiol Infect. 2006 Jun;12(6):501–3. doi: 10.1111/j.1469-0691.2006.01454.x.
  32. Turnidge J, Kahlmeter G, Kronvall G. Statistical characterisation of bacterial wild-type MIC value distributions and the determination of epidemiological cut-off values. Clin Microbiol Infect. 2006 May;12(5):418–25. doi: 10.1111/j.1469-0691.2006.01377.x.
  33. Luzhnova SA, Voronkov AV, Kodonidi IP, Gabitova NM, Hrapova AV, Billel Souda. ACTIVITY OF NEW DERIVATIVES OF 1,3-DIAZINON-4 AND THEIR NON-CYCLIC PRECURSORS AGAINST STAPHILOCOCCYS AUREUS. Astrakhan medical journal. 2017;12(2):56–63. Russian
  34. Gajdács M. The Continuing Threat of Methicillin-Resistant Staphylococcus aureus. Antibiotics (Basel). 2019 May 2;8(2):52. doi: 10.3390/antibiotics8020052.
  35. Nandwana NK, Singh RP, Patel OPS, Dhiman S, Saini HK, Jha PN, Kumar A. Design and Synthesis of Imidazo/Benzimidazo[1,2-c]quinazoline Derivatives and Evaluation of Their Antimicrobial Activity. ACS Omega. 2018 Nov 30;3(11):16338–46. doi: 10.1021/acsomega.8b01592.
  36. Maruthamuthu D, Rajam S, Christina Ruby Stella P, BharathiDileepan AG, Ranjith R. The chemistry and biological significance of imidazole, benzimidazole, benzoxazole, tetrazole and quinazolinone nucleus. J. Chem. Pharm. Res. 2016;8(5):505–26.
  37. Mahato A, Shrivastava B, Shanthi N. Synthesis, Molecular Docking and Biological Evaluation of Substituted Quinazolinones as Antibacterial Agents. Chemical Science Transactions. 2015;4(2):595–603. doi: 10.7598/cst2015.995.
  38. Fisher JF, Mobashery S. Constructing and deconstructing the bacterial cell wall. Protein Sci. 2020 Mar;29(3):629–46. doi: 10.1002/pro.3737.
  39. Ibrahim MAA, Abdeljawaad KAA, Abdelrahman AHM, Alzahrani OR, Alshabrmi FM, Khalaf E, Moustafa MF, Alrumaihi F, Allemailem KS, Soliman MES, Paré PW, Hegazy MF, Atia MAM. Non-β-Lactam Allosteric Inhibitors Target Methicillin-Resistant Staphylococcus aureus: An In Silico Drug Discovery Study. Antibiotics (Basel). 2021 Aug 1;10(8):934. doi: 10.3390/antibiotics10080934.
  40. Mahasenan KV, Molina R, Bouley R, Batuecas MT, Fisher JF, Hermoso JA, Chang M, Mobashery S. Conformational Dynamics in Penicillin-Binding Protein 2a of Methicillin-Resistant Staphylococcus aureus, Allosteric Communication Network and Enablement of Catalysis. J Am Chem Soc. 2017 Feb 8;139(5):2102–2110. doi: 10.1021/jacs.6b12565.
  41. Higgins DL, Chang R, Debabov DV, Leung J, Wu T, Krause KM, Sandvik E, Hubbard JM, Kaniga K, Schmidt DE Jr, Gao Q, Cass RT, Karr DE, Benton BM, Humphrey PP. Telavancin, a multifunctional lipoglycopeptide, disrupts both cell wall synthesis and cell membrane integrity in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2005 Mar;49(3):1127–34. doi: 10.1128/AAC.49.3.1127-1134.2005.
  42. Bayer AS, Schneider T, Sahl HG. Mechanisms of daptomycin resistance in Staphylococcus aureus: role of the cell membrane and cell wall. Ann N Y Acad Sci. 2013 Jan;1277(1):139–58. doi: 10.1111/j.1749-6632.2012.06819.x.
  43. Zubareva IV, Berenshtein TF, Fedyanin SD. Ob adgezii grampolozhitel’nyh kokkov [On the adhesion of gram-positive cocci]. Journal “Vestnik of Vitebsk State Medical University”. 2010;9(1):6–15. Russian

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1 – General formula of quinazolin-4 (3H)-one derivatives

Download (16KB)

Copyright (c) 2021 Samotrueva M.A., Ozerov A.A., Starikova A.A., Gabitova N.M., Merezhkina D.V., Tsibizova A.A., Tyurenkov I.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».