Соединение ДФ-5 замедляет развитие диабетической нефропатии у крыс

Обложка

Цитировать

Полный текст

Аннотация

Конечные продукты гликирования играют важную роль в развитии осложнений сахарного диабета. По этой причине замедление образования поперечных сшивок гликированных белков, как предполагается, является потенциальным терапевтическим подходом к лечению и профилактике осложнений заболевания, связанных с поражением сосудов.

Цель. Оценка способности нового антисшивающего соединения ДФ-5 влиять на количество конечных продуктов гликирования и коллагена в почках, на массу тела, уровни глюкозы и гликированного гемоглобина, а также на развитие ранних проявлений поражения почек у крыс со стрептозотоциновым сахарным диабетом.

Материалы и методы. Работа проведена на 40 самцах крыс Sprague-Dawley. Через 2 месяца после индукции диабета исследуемое вещество вводили внутрижелудочно (12,5 мг/кг) 1 р/сут в течение 28 дней с помощью зонда. Определяли уровень глюкозы и гликированного гемоглобина в крови, оценивали функцию почек, а также проводили гистологическое и иммуногистохимическое исследования тканей почек.

Результаты. Регулярное внутрижелудочное введение ДФ-5 в течение 30 сут статистически значимо снижало уровень HbA1c в крови, но не влияло на уровень глюкозы в крови натощак. Соединение ДФ-5 существенно уменьшало протеинурию и предотвращало повреждение почек у экспериментальных животных за счет ограничения повреждений клубочков и канальцев. Было установлено, что соединение ДФ-5 замедляет повреждение почек на ранней стадии диабетической нефропатии, что сопровождается снижением количества конечных продуктов гликирования в ткани почек, улучшением их морфологической картины и функции.

Заключение. Полученные результаты открывают возможность для разработки дополнительного терапевтического подхода к лечению диабетической нефропатии и, возможно, других осложнений сахарного диабета.

Об авторах

Александр Алексеевич Спасов

Федеральное государственное бюджетное образовательное учреждение высшего образования «Волгоградский государственный медицинский университет» Министерства здравоохранения Российской Федерации; Государственное бюджетное учреждение «Волгоградский медицинский научный центр»

Email: aspasov@mail.ru
ORCID iD: 0000-0002-7185-4826

доктор медицинских наук, академик РАН, заведующий кафедрой фармакологии и биоинформатики, ФГБОУ ВО ВолгГМУ Минздрава России; заведующий лабораторией экспериментальной фармакологии ГБУ ВМНЦ

Россия, 400131, г. Волгоград, пл. Павших Борцов, д. 1; 400131, г. Волгоград, пл. Павших Борцов, д. 1

Ольга Николаевна Жуковская

Научно-исследовательский институт физической и органической химии федеральное государственное автономное образовательное учреждение высшего профессионального образования «Южный федеральный университет»

Email: zhukowskaia.ol@yandex.ru
ORCID iD: 0000-0003-2485-2139

кандидат химических наук, старший научный сотрудник лаборатории органического синтеза

Россия, 344090, г. Ростов-на-Дону, пр-т Стачки, д. 194/2

Андрей Игоревич Ращенко

Федеральное государственное бюджетное образовательное учреждение высшего образования «Волгоградский государственный медицинский университет» Министерства здравоохранения Российской Федерации

Email: a.rashencko@yandex.ru

кандидат фармацевтических наук, старший научный сотрудник лаборатории метаботропных лекарственных средств НЦИЛС

Россия, 400131, г. Волгоград, пл. Павших Борцов, д. 1

Анастасия Андреевна Бригадирова

Федеральное государственное бюджетное образовательное учреждение высшего образования «Волгоградский государственный медицинский университет» Министерства здравоохранения Российской Федерации; Государственное бюджетное учреждение «Волгоградский медицинский научный центр»

Email: a.brigadirova@gmail.com
ORCID iD: 0000-0003-0957-7087

кандидат медицинских наук, доцент кафедры фармакологии и биоинформатики ФГБОУ ВО ВолгГМУ Минздрава России; младший научный сотрудник лаборатории экспериментальной фармакологии ГБУ ВМНЦ

Россия, 400131, г. Волгоград, пл. Павших Борцов, д. 1; 400131, г. Волгоград, пл. Павших Борцов, д. 1

Роман Александрович Литвинов

Федеральное государственное бюджетное образовательное учреждение высшего образования «Волгоградский государственный медицинский университет» Министерства здравоохранения Российской Федерации; Государственное бюджетное учреждение «Волгоградский медицинский научный центр»

Автор, ответственный за переписку.
Email: litvinov.volggmu@mail.ru
ORCID iD: 0000-0002-0162-0653

кандидат медицинских наук, старший научный сотрудник лаборатории метаботропных лекарственных средств НЦИЛС, ФГБОУ ВО ВолгГМУ Минздрава России; научный сотрудник лаборатории экспериментальной фармакологии ГБУ ВМНЦ

Россия, 400131, г. Волгоград, пл. Павших Борцов, д. 1; 400131, г. Волгоград, пл. Павших Борцов, д. 1

Наталия Алексеевна Гурова

Федеральное государственное бюджетное образовательное учреждение высшего образования «Волгоградский государственный медицинский университет» Министерства здравоохранения Российской Федерации

Email: gurova.vlgmed@mail.ru
ORCID iD: 0000-0002-0670-1444

доктор медицинских наук, профессор кафедры фармакологии и биоинформатики

Россия, 400131, г. Волгоград, пл. Павших Борцов, д. 1

Алексей Владимирович Смирнов

Федеральное государственное бюджетное образовательное учреждение высшего образования «Волгоградский государственный медицинский университет» Министерства здравоохранения Российской Федерации; Государственное бюджетное учреждение «Волгоградский медицинский научный центр»

Email: alexey-smirnov@rambler.ru
ORCID iD: 0000-0001-5351-6105

доктор медицинских наук, заведующий кафедрой патологической анатомии ФГБОУ ВО ВолгГМУ Минздрава России

Россия, 400131, г. Волгоград, пл. Павших Борцов, д. 1; 400131, г. Волгоград, пл. Павших Борцов, д. 1

Николай Геннадьевич Паньшин

Федеральное государственное бюджетное образовательное учреждение высшего образования «Волгоградский государственный медицинский университет» Министерства здравоохранения Российской Федерации

Email: panshin.nickolay@gmail.com
ORCID iD: 0000-0002-4035-4108

кандидат медицинских наук, доцент кафедры патологической анатомии

Россия, 400131, г. Волгоград, пл. Павших Борцов, д. 1

Хайдер Сабри Аббас Аббас

Научно-исследовательский институт физической и органической химии федеральное государственное автономное образовательное учреждение высшего профессионального образования «Южный федеральный университет»

Email: vip.haider89@gmail.ru

магистрант лаборатории органического синтеза

Россия, 344090, г. Ростов-на-Дону, пр-т Стачки, д. 194/2

Анатолий Савельевич Морковник

Научно-исследовательский институт физической и органической химии федеральное государственное автономное образовательное учреждение высшего профессионального образования «Южный федеральный университет»

Email: asmork@mail.ru
ORCID iD: 0000-0002-9182-6101

доктор химических наук, главный научный сотрудник лаборатории органического синтеза

Россия, 344090, г. Ростов-на-Дону, пр-т Стачки, д. 194/2

Список литературы

  1. Silva J.A.D., Souza E.C.F., Echazú Böschemeier A.G., Costa C.C.M.D., Bezerra H.S., Feitosa E.E.L.C. Diagnosis of diabetes mellitus and living with a chronic condition: participatory study // BMC Public Health. – 2018. – Vol. 18, No. 1. – Art. ID: 699. doi: 10.1186/s12889-018-5637-9
  2. Singh V.P., Bali A., Singh N., Jaggi A.S. Advanced Glycation End Products and Diabetic Complications // Korean J. Physiol. Pharmacol. – 2014. – Vol. 18, No. 1. – P. 1–14. doi: 10.4196/kjpp.2014.18.1.1
  3. Rhee S.Y., Kim Y.S. The Role of Advanced Glycation End Products in Diabetic Vascular Complications // Diabetes Metab. J. – 2018. – Vol. 42, No. 3. – P. 188–195. doi: 10.4093/dmj.2017.0105
  4. Chaudhuri J., Bains Y., Guha S., Kahn A., Hall D., Bose N., et al. The Role of Advanced Glycation End Products in Aging and Metabolic Diseases: Bridging Association and Causality // Cell Metab. – 2018. – Vol .28, No. 3. – P. 337–352. doi: 10.1016/j.cmet.2018.08.014
  5. Bodiga V.L., Eda S.R., Bodiga S. Advanced glycation end products: role in pathology of diabetic cardiomyopathy // Heart Fail Rev. – 2014. – Vol. 19, No. 1. – P. 49–63. doi: 10.1007/s10741-013-9374-y
  6. Bhat S., Mary S., Giri A.P., Kulkarni M.J. Advanced Glycation End Products (AGEs) in Diabetic Complications / Mechanisms of Vascular Defects in Diabetes Mellitus. Advances in Biochemistry in Health and Disease // Edited by Kartha C.C., Ramachandran S., Pillai R.M. Cham: Springer International Publishing, 2017. – P. 423–449. doi: 10.1007/978-3-319-60324-7_19
  7. Rabbani N., Thornalley P.J. Advanced glycation end products in the pathogenesis of chronic kidney disease // Kidney Int. – 2018. – Vol. 93, No. 4 – P. 803–813. doi: 10.1016/j.kint.2017.11.034
  8. Nabi R., Alvi S.S., Saeed M., Ahmad S., Khan M.S. Glycation and HMG-CoA Reductase Inhibitors: Implication in Diabetes and Associated Complications // Curr. Diabetes Rev. – 2019. – Vol. 15, No. 3. – P. 213–223. doi: 10.2174/1573399814666180924113442
  9. Nabi R., Alvi S.S., Khan R.H., Ahmad S., Ahmad S., Khan M.S. Antiglycation study of HMG-R inhibitors and tocotrienol against glycated BSA and LDL: A comparative study // Int. J. Biol. Macromol. – 2018. – Vol. 116. – P. 983–992. doi: 10.1016/j.ijbiomac.2018.05.115
  10. Rahbar S., Figarola J.L. Novel inhibitors of advanced glycation endproducts // Arch. Biochem. Biophys. – 2003. – Vol. 419, No. 1. – P. 63–79. doi: 10.1016/j.abb.2003.08.009
  11. Akhter F., Khan M.S., Ahmad S. Acquired immunogenicity of calf thymus DNA and LDL modified by D-ribose: a comparative study // Int. J. Biol. Macromol. – 2015. – Vol. 72. – P. 1222–1227. doi: 10.1016/j.ijbiomac.2014.10.034
  12. Jabir N.R., Ahmad S., Tabrez S. An insight on the association of glycation with hepatocellular carcinoma // Semin. Cancer. Biol. – 2018. – Vol. 49. – P. 56–63. doi: 10.1016/j.semcancer.2017.06.005
  13. Brings S., Fleming T., Freichel M., Muckenthaler M.U., Herzig S., Nawroth P.P. Dicarbonyls and Advanced Glycation End-Products in the Development of Diabetic Complications and Targets for Intervention // Int. J. Mol. Sci. – 2017. – Vol. 18, No. 5. – Art. ID: 984. doi: 10.3390/ijms18050984
  14. Vasan S., Foiles P., Founds H. Therapeutic potential of breakers of advanced glycation end product–protein crosslinks // Arch. Biochem. Biophys. – 2003. – Vol. 419, No. 1. – P. 89–96. doi: 10.1016/j.abb.2003.08.016
  15. Zuehlke C.W. Methods of Organic Elemental Microanalysis // J. Am. Chem. Soc. – 1963. – Vol. 85, No. 16. – Art. ID: 2536. doi: 10.1021/ja00899a055
  16. Vasan S., Zhang X., Zhang X., Kapurniotu A., Bernhagen J., Teichberg S., Basgen J., Wagle D., Shih D., Terlecky I., Bucala R., Cerami A., Egan J., Ulrich P. An agent cleaving glucose-derived protein crosslinks in vitro and in vivo // Nature. – 1996. – Vol. 382, No. 6588. – P. 275–278. doi: 10.1038/382275a0
  17. Жуковская О.Н., Анисимова В.А., Морковник А.С., Петров В.И., Спасов А.А., Ращенко А.И., Бригадирова А.А., Аббас Х.С.А. 9-бензил-2-бифенилимидазо[1,2-а]бензимидазол и его фармацевтически приемлемые соли, проявляющие свойства разрушителей поперечных сшивок гликированных белков. RU 2627769 C1, 2017.
  18. Zhang B., He K., Chen W., Cheng X., Cui H., Zhong W., Li S., Wang L. Alagebrium (ALT-711) improves the anti-hypertensive efficacy of nifedipine in diabetic-hypertensive rats // Hypertens. Res. – 2014. – Vol. 37, No. 10. – P. 901–907. doi: 10.1038/hr.2014.98
  19. Cheng G., Wang L.L., Qu W.S., Long L., Cui H., Liu H.Y., Cao Y.L., Li S. C16, a novel advanced glycation endproduct breaker, restores cardiovascular dysfunction in experimental diabetic rats // Acta Pharmacol. Sin. – 2005. – Vol. 26, No. 12. – P. 1460–1466. doi: 10.1111/j.1745-7254.2005.00240.x
  20. Cheng G., Wang L.L., Long L., Liu H.Y., Cui H., Qu W.S., Li S. Beneficial effects of C36, a novel breaker of advanced glycation endproducts cross-links, on the cardiovascular system of diabetic rats // Br. J. Pharmacol. – 2007. – Vol. 152, No. 8. – P. 1196–1206. doi: 10.1038/sj.bjp.0707533
  21. Spasov A.A., Zhukovskaya O.N., Brigadirova A.A., Abbas H.S.A., Anisimova V.A., Sysoeva V.A., Rashchenko A.I., Litvinov R.A., Mayka O.Yu., Babkov D.A., Morkovnik A.S. Synthesis and pharmacological activity of 2-(biphenyl-4-yl)imidazo[1,2-a]benzimidazoles // Russ. Chem. Bull. – 2017. – Vol. 66. – P. 1905–1912. doi: 10.1007/s11172-017-1965-7
  22. Cho S.J., Roman G., Yeboah F., Konishi Y. The Road to Advanced Glycation End Products: A Mechanistic Perspective // Curr. Med. Chem. – 2007. – Vol. 14, No. 15. – P. 1653–1671. doi: 10.2174/092986707780830989
  23. Tang S.C.W., Yiu W.H. Innate immunity in diabetic kidney disease // Nat. Rev. Nephrol. 2020- Vol. 16. – P. 206–222. doi: 10.1038/s41581-019-0234-4
  24. Yao D., Wang S., Wang M., Lu W. Renoprotection of dapagliflozin in human renal proximal tubular cells via the inhibition of the high mobility group box 1receptor for advanced glycation end productsnuclear factorκB signaling pathway // Mol. Med. Rep. – 2018. – Vol. 18, No. 4. – P. 3625–3630. doi: 10.3892/mmr.2018.9393.
  25. Kolset S.O., Reinholt F.P., Jenssen T. Diabetic Nephropathy and Extracellular Matrix // J. Histochem. Cytochem. – 2012. – Vol. 60, No. 12. – P. 976–986. doi: 10.1369/0022155412465073
  26. Dalla Vestra M., Saller A., Mauer M., Fioretto P. Role of mesangial expansion in the pathogenesis of diabetic nephropathy // J. Nephrol. – 2001. – Vol. 14, Suppl 4. – P. 51–57.
  27. Amorim R.G., Guedes G. da S., Vasconcelos S.M. de L., Santos J.C. de F. Kidney Disease in Diabetes Mellitus: Cross-Linking between Hyperglycemia, Redox Imbalance and Inflammation // Arq. Bras. Cardiol. – 2019. – Vol. 112, No. 5. – P. 577-587. doi: 10.5935/abc.20190077. Erratum in: Arq. Bras. Cardiol. – 2019. – Vol. 113, No. 1. – Art. ID: 182.
  28. Vasan S., Foiles P.G., Founds H.W. Therapeutic potential of AGE inhibitors and breakers of AGE protein cross-links // Expert Opin. Investig. Drugs. – 2001. – Vol. 10, No. 11. – P. 1977–1987. doi: 10.1517/13543784.10.11.1977
  29. Forbes J.M., Thallas V., Thomas M.C., Founds H.W., Burns W.C., Jerums G., Cooper ME. The breakdown of preexisting advanced glycation end products is associated with reduced renal fibrosis in experimental diabetes // FASEB J. – 2003. – Vol. 17, No. 12. – P. 1762–1764. doi: 10.1096/fj.02-1102fje
  30. Kim Y.S., Kim J., Kim C.S., Sohn E.J., Lee Y.M., Jeong I.H., Kim H., Jang D.S., Kim J.S. KIOM-79, an Inhibitor of AGEs–Protein Cross-linking, Prevents Progression of Nephropathy in Zucker Diabetic Fatty Rats // Evid. Based Complement. Alternat. Med. – 2011. – Vol. 2011. – P. 1–10. doi: 10.1093/ecam/nep078
  31. Jung E., Park S.B., Jung W.K., Kim H.R., Kim J. Antiglycation Activity of Aucubin In Vitro and in Exogenous Methylglyoxal Injected Rats // Molecules. – 2019. – Vol. 24, No. 20. – Art. ID: 3653. doi: 10.3390/molecules24203653
  32. Kim J., Kim C.S., Kim Y.S., Lee I.S., Kim J.S. Jakyakgamcho-tang and Its Major Component, Paeonia Lactiflora, Exhibit Potent Anti-glycation Properties // J. Exerc. Nutrition Biochem. – 2016. – Vol. 20, No. 4. – P. 60–64. doi: 10.20463/jenb.2016.0049
  33. Kim C.S., Jo K., Pyo M.K., Kim J.S., Kim J. Pectin lyase-modified red ginseng extract exhibits potent anti-glycation effects in vitro and in vivo // J. Exerc. Nutrition Biochem. – 2017. – Vol. 21, No. 2. – P. 56–62. doi: 10.20463/jenb.2017.0011
  34. Coughlan M.T., Forbes J.M., Cooper M.E. Role of the AGE crosslink breaker, alagebrium, as a renoprotective agent in diabetes // Kidney International. – 2007. – Vol. 72, Suppl. 106. – P. 54–60. doi: 10.1038/sj.ki.5002387
  35. Thallas-Bonke V., Lindschau C., Rizkalla B., Bach L.A., Boner G., Meier M., Haller H., Cooper M.E., Forbes J.M. Attenuation of Extracellular Matrix Accumulation in Diabetic Nephropathy by the Advanced Glycation End Product Cross-Link Breaker ALT-711 via a Protein Kinase C- -Dependent Pathway // Diabetes. – 2004. – Vol. 53. – P. 2921–2930. doi: 10.2337/diabetes.53.11.2921
  36. Yang S., Litchfield J.E., Baynes J.W. AGE-breakers cleave model compounds, but do not break Maillard crosslinks in skin and tail collagen from diabetic rats // Arch. Biochem. Biophys. – 2003. – Vol. 412, No. 1. – P. 42–46. doi: 10.1016/S0003-9861(03)00015-8
  37. Nasiri R., Field M.J., Zahedi M., Moosavi-Movahedi A.A. Cross-Linking Mechanisms of Arginine and Lysine with α,β-Dicarbonyl Compounds in Aqueous Solution // J. Phys. Chem. A. – 2011. – Vol. 115, No. 46. – P. 13542–13555. doi: 10.1021/jp205558d
  38. Nasiri R., Field M.J., Zahedi M., Moosavi-Movahedi A.A. Comparative DFT Study To Determine if α-Oxoaldehydes are Precursors for Pentosidine Formation // J. Phys. Chem. A. – 2012. – Vol. 116, No. 11. – P. 2986–2996. doi: 10.1021/jp2104165
  39. Nobécourt E., Zeng J., Davies M.J., Brown B.E., Yadav S., Barter P.J., Rye K.A. Effects of cross-link breakers, glycation inhibitors and insulin sensitisers on HDL function and the non-enzymatic glycation of apolipoprotein A-I // Diabetologia. – 2008. – Vol. 51, No. 6. – P. 1008–1017. doi: 10.1007/s00125-008-0986-z
  40. Kim T., Spiegel D.A. The Unique Reactivity of N-Phenacyl-Derived Thiazolium Salts Toward α-Dicarbonyl Compounds // Rejuvenation Res. – 2013. – Vol. 16, No. 1. – P. 43–50. doi: 10.1089/rej.2012.1370
  41. Sherwani S.I., Khan H.A., Ekhzaimy A., Masood A., Sakharkar M.K. Significance of HbA1c Test in Diagnosis and Prognosis of Diabetic Patients // Biomark Insights. – 2016. – Vol. 11. – P. 95–104. doi: 10.4137/BMI.S38440
  42. Nagai R., Murray D.B., Metz T.O., Baynes J.W. Chelation: A Fundamental Mechanism of Action of AGE Inhibitors, AGE Breakers, and Other Inhibitors of Diabetes Complications // Diabetes. 2012. – Vol. 61, No. 3. – P. 549–559. doi: 10.2337/db11-1120
  43. Toprak C., Yigitaslan S. Alagebrium and Complications of Diabetes Mellitus // Eurasian J. Med. – 2019. – Vol. 51, No. 3. – P. 285–292. doi: 10.5152/eurasianjmed.2019.18434

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рисунок 1 – Схема синтеза гидрохлорида 9-бензил-2-бифенилимидазо[1,2-а]бензимидазола (соединение ДФ-5)

Скачать (45KB)
3. Рисунок 2 – Химическая структура соединения ALT-711 (алагебриум)

Скачать (19KB)
4. Рисунок 3 – Гистологическая картина клубочков. Изменения в тканях почек, вызванные сахарным диабетом, а также эффект от лечения соединениями ДФ-5 или ALT-711

Скачать (522KB)
5. Рисунок 4 – Влияние соединений ДФ-5 и ALT-711 на накопление КПГ в почках, вызванное сахарным диабетом

Скачать (318KB)

© Спасов А.А., Жуковская О.Н., Ращенко А.И., Бригадирова А.А., Литвинов Р.А., Гурова Н.А., Смирнов А.В., Паньшин Н.Г., Аббас Х.С., Морковник А.С., 2023

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.
 

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».