Geometric Features of Structuring of Amphiphilic Macromolecules on the Surface of a Spherical Nanoparticle

Capa

Citar

Texto integral

Resumo

The self-assembly of amphiphilic homopolymers tightly grafted to the spherical nanoparticle and immersed in a selective solvent is studied by the computer experiment method. Conditions under which macromolecules form thin membrane-like layers surrounding the nanoparticle are determined. It is first shown that the emerging polymer structures may be approximated by complete embedded minimal surfaces satisfying the Weierstrass representation, namely, helicoid, catenoid, and Enneper and Costa surfaces. Mathematical constructions defining these minimal surfaces highlight a new type of ordering of polymer structures and determine its symmetry classification similar to crystal classification by Fedorov groups. Calculations for the two considered sets of parameters show that structures approximated by a helicoid are energetically more favorable than structures approximated by other minimal surfaces.

Sobre autores

D. Mitkovskiy

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences; Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University

Email: vvvas@polly.phys.msu.ru
119991, Moscow, Russia; 119991, Moscow, Russia

A. Lazutin

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: vvvas@polly.phys.msu.ru
119991, Moscow, Russia

A. Ushakova

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: vvvas@polly.phys.msu.ru
119991, Moscow, Russia

A. Talis

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: talishome@mail.ru
119991, Moscow, Russia

V. Vasilevskaya

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences; Faculty of Chemistry, Lomonosov Moscow State University

Autor responsável pela correspondência
Email: vvvas@polly.phys.msu.ru
119991, Moscow, Russia; 119991, Moscow, Russia

Bibliografia

  1. Bates F.S., Fredrickson G.H. // Annu. Rev. Phys. Chem. 1990. V. 41. P. 525.
  2. Lodge T. // Mikrochim. Acta. 1994. V. 116. P. 1.
  3. Hamley I.W., Koppi K.A., Rosedale J.H., Bates F.S., Almdal K., Mortensen K. // Macromolecules. 1993. V. 26. P. 5959.
  4. Block Copolymers in Nanoscience / Ed. by M. Lazzari, G. Liu, S. Lecommandoux. Darmstadt: Wiley, 2006.
  5. Lodge T.P. // Macromol. Chem. Phys. 2003. V. 204. P. 265.
  6. Leibler L. // Macromolecules. 1980. V. 13. P. 1602.
  7. Semenov A.N. // JETP. 1985. V. 61. P. 733.
  8. Ерухимович И.Я., Хохлов А.Р. // Высокомолек. соед. А.1993. Т. 35. № 11. P. 1808.
  9. Floudas G., Hadjichristidis N., Tselikas Y., Erukhimo-vich I. // Macromolecules. 1997. V. 30. P. 3090.
  10. Erukhimovich I., Abetz V., Stadler R. // Macromolecules. 1997. V. 30. P. 7435.
  11. Erukhimovich I.Ya., Smirnova Yu.G., Abetz V. // Polymer Science A. 2003. V. 45. № 11. P. 1093.
  12. Smirnova Y.G., ten Brinke G., Erukhimovich I.Ya. // J. Chem. Phys. 2006. V. 124. 054907.
  13. Erukhimovich I.Y. // Eur. Phys. J. E. 2005. V. 18. P. 383.
  14. Nap R., Sushko N., Erukhimovich I., ten Brinke G. // Macromolecules. 2006. V. 39. P. 6765.
  15. Kriksin Y.A., Khalatur P.G., Erukhimovich I.Ya., ten Brinke G., Khokhlov A.R. // Soft Matter. 2009. V. 5. P. 2896.
  16. Glagoleva A., Erukhimovich I., Vasilevskaya V. // Macromol. Theory Simul. 2013. V. 22. P. 31.
  17. Erukhimovich I. // Polymer Science C. 2018. V. 60. № 2. P. 49.
  18. Lee S., Bluemle M.J., Bates F.S. // Science. 2010. V. 330. P. 349.
  19. Hajduk D.A., Harper P.E., Gruner S.M., Honeker C.C., Kim G., Thomas E.L., Fetters L.J. // Macromolecules. 1994. V. 27. P. 4063.
  20. Thomas E.L., Alward D.B., Kinning D.J., Martin D.C., Handlin D.L., Fetters L.J. // Macromolecules.1986. V. 19. P. 2197.
  21. Khandpur A.K., Foerster S., Bates F.S., Hamley I.W., Ryan A.J., Bras W., Almdal K., Mortensen K. // Macromolecules. 1995. V. 28. P. 8796.
  22. Reddy A., Feng X., Thomas E.L., Grason G.M. // Macromolecules. 2021. V. 54. P. 9223.
  23. Mosseri R., Sadoc J.F. // J. Phys. Colloques. 1990. V. 51. C7–257.
  24. Talis A., Everstov A., Kraposhin V. // Acta Crystallogr. A. 2021. V. 77. P. 7.
  25. Castle T., Evans M.E., Hyde S.T., Ramsden S., Robins V. // Interface Focus. 2012. V. 2. P. 555.
  26. Вайнштейн Б.К. Современная rристаллография. М.: Наука, 1979. Т. 1.
  27. Тужилин А.А., Фоменко А.Т. Элементы геометрии и топологии минимальных поверхностей. М.: URSS, 2022.
  28. Фоменко А.Т. Вариационные методы в топологии. М.: Наука, 1982.
  29. Anetor L. Minimal Surfaces Embedded in Euclidean Space, aster. Differential Geometry. Bucharest: Geometry Balkan Press, 2016.
  30. Pu W.-F., Ushakova A., Liu R., Lazutin A.A., Vasilevskaya V.V. // J. Chem. Phys. 2020. V. 152. P. 234903.
  31. Ushakova A.S., Lazutin A.A., Vasilevskaya V.V. // Macromolecules. 2021. V. 54. P. 6285.
  32. Ushakova A.S., Vasilevskaya V.V. // Polymers. 2022. V. 14. P. 4358.
  33. Saraev Z.R., Lazutin A.A., Vasilevskaya V.V. // Molecules. 2022. V. 27. P. 8535.
  34. Lazutin A.A., Vasilevskaya V.V. // Polymer. 2022. V. 255. P. 125172.
  35. Хоффман Д., Кархер Г. Итоги науки и техники. Серия “Современные проблемы математики. Фундаментальные направления”. М.: ФИЗМАТЛИТ, 2003. Т. 90. С. 13.
  36. Löbling T.I., Haataja J.S., Synatschke C.V., Schacher F.H., Müller M., Hanisch A., Gröschel A.H., H Müller E. // ACS Nano. 2014. V. 8. P. 11330.
  37. Plimpton S.J. // Computat. Phys. 1995. V. 117. P. 1.
  38. Weeks J.D., Chandler D., Andersen H.C. // J. Chem. Phys. 1971. V. 54. P. 5237.
  39. Verlet L. // Phys. Rev. 1967. V. 159. P. 98.
  40. Smith J. // Compos. Sci. Technol. 2003. V. 63. P. 1599.
  41. Bishop M., Kalos M.H., Frisch H.L. // J. Chem. Phys. 1979. V. 70. P. 1299.
  42. Grest G.S., Kremer K. // Phys. Rev. A. 1986. V. 33. P. 3628.
  43. Cho J., Ogata Y. // J. Geom. 2017. V. 108. P. 463.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (550KB)
3.

Baixar (67KB)
4.

Baixar (1MB)
5.

Baixar (652KB)
6.

Baixar (121KB)
7.

Baixar (230KB)

Declaração de direitos autorais © Д.А. Митьковский, А.А. Лазутин, А.С. Ушакова, А.Л. Талис, В.В. Василевская, 2023

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).