Nitrogen-containing compounds in several lichen species – representatives of Antarctic flora

Cover Page

Cite item

Full Text

Abstract

Lichens are a stable, self-regulating association of fungus and algae or cyanobacteria. The composition of photobionts is associated with certain taxonomic groups of lichens. The most common groups of lichen photobionts are green algae and cyanoprokaryotes. Being well adapted, lichens play a prominent role in the Antarctic flora. The purpose of work is to study the nitrogen-containing composition of lichen thalli in the Antarctic flora. The samples of thalli were collected by doctor of biological sciences M.P. Andreev (Komarov Botanical Institute of the Russian Academy of Sciences) the January–April of 2015, 2016 and 2018 in different regions of the Antarctic. 11 lichen species with different photobiont type, including algae and/or cyanobacteria and belonging to the families Cladoniaceae, Parmeliaceae, Sphaerophoraceae, Ochrolechiaceae, Umbilicariaceae, Stereocaulaceae, Pannariaceae, and Collemataceae, were analysed. The work includes the data on the content of total nitrogen, soluble protein, free and protein amino acids in thalli of representatives of the Antarctic zone. There is a significant species variability by the content of total nitrogen, soluble protein, protein and free amino acids between thalli of Antarctic lichens. The studied parameters are found for a high variation coefficient. The median values of the samples for the content of amino acids differ from the mean values, which indicate a slight shift in the normalcy of the primary data distribution. Lichens with cyanoprokaryotes have been identified to be prominent through a higher content of total nitrogen and protein amino acids compared to lichens with green algae as photobiont. The content of protein and free amino acids is found to be closely correlated with the concentration of total nitrogen in thalli, whereas the correlation between the content of soluble protein and total nitrogen, as well as soluble protein and the sum of PAA and FAA is statistically insignificant. In general, the results obtained significantly deepen and expand the knowledge on the ecological and biological features of Antarctic lichens and their role in the nitrogen cycle of ecosystems.

About the authors

Galina Nikolaevna Tabalenkova

Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences

Email: tabalenkova@ib.komisc.ru

doctor of biological sciences, associate professor, leading researcher of Ecological Plants Physiology Laboratory

Russian Federation

Ekaterina Valerievna Silina

Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: silina@ib.komisc.ru

candidate of biological sciences, researcher of Ecological Plants Physiology Laboratory

Russian Federation

References

  1. Андреев М.П. Лишайники Антарктики: видовой состав, история и перспективы изучения и особенности формирования синузий на орнитогенных почвах // Ботаника в современном мире: тр. XIV Съезда Русского ботанического общества и конференции «Ботаника в современном мире» (г. Махачкала, 18–23 июня 2018 г.). Т. 3: Споровые растения. Микология. Структурная ботаника. Физиология и биохимия растений. Эмбриология растений. Махачкала: Алеф, 2018. С. 7–10.
  2. Вайнштейн Е.А. Регуляторные механизмы лишайникового симбиоза // Успехи современной биологии. 1990. Т. 109, вып. 2. С. 311–320.
  3. Pichler G., Muggia L., Carniel F.C., Grube M., Kranner I. How to build a lichen: from metabolite release to symbiotic interplay // New Phytologist. 2023. Vol. 238, iss. 4. P. 1362–1378. doi: 10.1111/nph.18780.
  4. Флора лишайников России: биология, экология, разнообразие, распространение и методы изучения лишайников / отв. ред. М.П. Андреев, Д.Е. Гимельбрант. М.; СПб.: Тов-во научных изданий КМК, 2014. 392 с.
  5. Войцeхович А.А., Михайлюк Т.И., Дариенко Т.М. Фотобионты лишайников. 1: разнообразие, экологические особенности, взаимоотношения и пути совместной эволюции с микобионтом // Альгология. 2011. Т. 21, № 1. С. 3–26.
  6. Liu X.-Q., Lee K.-S. Effect of mixed amino acids on crop growth // Agricultural Science / ed. by G. Aflakpui. InTech, 2012. P. 119–158. doi: 10.5772/37461.
  7. Amir R. Current understanding of the factors regulating methionine content in vegetative tissues of higher plants // Amino Acids. 2010. Vol. 39, № 4. P. 917–931. doi: 10.1007/s00726-010-0482-x.
  8. Pinheiro C., Passarinho J.A., Ricardo C.P. Effect of drought and rewatering on the metabolism of Lupinus albus organs // Journal of Plant Physiology. 2004. Vol. 161, iss. 11. P. 1203–1210. doi: 10.1016/j.jplph.2004.01.016.
  9. Walch-Liu P., Liu L.-H., Remans T., Tester M., Forde B.G. Evidence that l-glutamate can act as an exogenous signal to modulate root growth and branching in Arabidopsis thaliana // Plant and Cell Physiology. 2006. Vol. 47, iss. 8. P. 1045–1057. doi: 10.1093/pcp/pcj075.
  10. Forde B.G., Lea P.J. Glutamate in plants: metabolism, regulation, and signalling // Journal of Experimental Botany. 2007. Vol. 58, iss. 9. P. 2339–2358. DOI: 10.1093/ jxb/erm121.
  11. Ünal D., Uyanikgi̇l Y. UV-B induces cell death in the lichen Physcia semipinnata (J.F. Gmel) // Turkish Journal of Biology. 2011. Vol. 35, № 2. P. 137–144. DOI: 10.3906/ biy-0901-5.
  12. Chowdhury D.P., Solhaug K.A., Gauslaa Y. Ultraviolet radiation reduces lichen growth rates // Symbiosis. 2017. Vol. 73, iss. 1. P. 27–34. doi: 10.1007/s13199-016-0468-x.
  13. Вершинина С.Э., Кравченко О.Ю. Состав аминокислот лишайника Cetraria islandica в Восточной Сибири // Пищевые технологии, качество и безопасность продуктов питания: мат-лы докл. науч.-практ. конф. Иркутск: ИрГТУ, 2008. С. 23–25.
  14. Вершинина С.Э., Кравченко О.Ю. Аминокислотный состав двух видов лишайников рода Cetraria // Хранение и переработка сельхозсырья. 2011. № 1. С. 26–28.
  15. Табаленкова Г.Н., Далькэ И.В., Захожий И.Г. Аминокислотный состав биомассы некоторых видов лишайников таежной зоны на Европейском Северо-Востоке России // Известия Самарского научного центра Российской академии наук. 2017. Т. 19, № 2–3. С. 556–560.
  16. Shelyakin M.A., Andreev M.P., Tabalenkova G.N., Golovko T.K. Respiratory activity of some lichen species-representatives of Antarctic flora // Contemporary Problems of Ecology. 2019. Vol. 12, iss. 4. P. 332–338. DOI: 10.1134/ s1995425519040115.
  17. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding // Analytical Biochemistry. 1976. Vol. 72, iss. 1–2. P. 248–254. doi: 10.1016/0003-2697 (76)90527-3.
  18. Пыстина Т.Н., Романов Г.Г. Видовое разнообразие цианобионтных лишайников и их азотфиксирующая активность на территории Республики Коми // Ботанический журнал. 2010. Т. 95, № 2. С. 177–187.
  19. Головко Т.К., Дымова О.В., Табаленкова Г.Н., Пыстина Т.Н. Фотосинтетические пигменты и азот в талломах лишайников бореальной флоры // Теоретическая и прикладная экология. 2015. № 4. С. 38–44.
  20. Nash T.H. Nutrients, elemental accumulation, and mineral cycling // Lichen biology / ed. by T.N. Nash. Cambridge University Press, 2008. P. 234–251. DOI: 10.1017/ cbo9780511790478.013.
  21. Tabuchi M., Abiko T., Yamaya T. Assimilation of ammonium ions and reutilization of nitrogen in rice (Oryza sativa L.) // Journal of Experimental Botany. 2007. Vol. 58, № 9. P. 2319–2327. doi: 10.1093/jxb/erm016.
  22. Miller A.J., Fan X., Shen Q., Smith S.J. Amino acids and nitrate as signals for the regulation of nitrogen acquisition // Journal of Experimental Botany. 2008. Vol. 59, iss. 1. P. 111–119. doi: 10.1093/jxb/erm208.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1 – Content of total nitrogen (A), sum of protein amino acids (B), sum of free amino acids (C) and soluble protein (D) in thalli of lichens with different types of photobiont: B – algae, B + C – algae and cyanobacteria, C – cyanobacteria

Download (291KB)

Copyright (c) 2024 Tabalenkova G.N., Silina E.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».