THE STUDY OF THE GEOGRAPHICAL DIFFERENTIATION OF SIBERIAN STONE PINE

Cover Page

Cite item

Full Text

Abstract

The phenology, productivity, intensity of gas exchange and resistance to biotic factors in climatic ecotypes of Siberian stone pine ( Рinus sibirica Du Tour) from latitudinal (from the West Siberian forest tundra to the low mountains of the Western Sayan) and longitude (from the Urals to the Northern Baikal region) profiles were studied in the 30-year clone archive at the scientific field station «Kedr» of the Institute for Monitoring of Climatic and Ecological Systems, Siberian Branch of the Russian Academy of Sciences. It has been established that Siberian stone pine is characterized by a high level of hereditarily determined ecological and geographical differentiation in productivity and resistance to biotic factors (pests and fungi diseases) when growing vegetative progeny in the south of the forest zone. The main factor of differences between ecotypes is the heat supply of the growing season in their places of origin. It increases significantly more from north to south than from east to west. Therefore, the differences between latitudinal ecotypes are much greater than between longitudinal ecotypes. The intensity of respiration depends more than the intensity of photosynthesis on the climate in which a given population was formed. Ecotypes from cold habitats have significantly higher respiration costs. This is an important factor in reducing their productivity in warmer climates. Being weakened by the imbalance between photosynthesis and respiration, they are damaged by pests and diseases which becomes an important factor in further reducing productivity. In conditions of global warming, ecotypes from warmer climates are not inferior to the local ecotype in terms of resistance to biotic factors and surpass it in productivity. Therefore, they are recommended to be actively used for breeding.

About the authors

S. N. Goroshkevich

Institute of Monitoring of Climatic and Ecological Systems, Russian Academy of Sciences, Siberian Branch

Author for correspondence.
Email: pearldiver@yandex.ru
Tomsk, Russian Federation

E. A. Zhuk

Institute of Monitoring of Climatic and Ecological Systems, Russian Academy of Sciences, Siberian Branch

Email: eazhuk@yandex.ru
Tomsk, Russian Federation

O. G. Bender

Institute of Monitoring of Climatic and Ecological Systems, Russian Academy of Sciences, Siberian Branch

Email: obender65@mail.ru
Tomsk, Russian Federation

References

  1. Авров Ф. Д. Рост привоев лиственницы различного географического происхождения // Географические культуры и плантации хвойных в Сибири. Новосибирск: Наука. Сиб. отд-ние, 1977. С. 124-153
  2. Авров Ф. Д. Экология и селекция лиственницы // Проблемы региональной экологии. Томск: Спектр, 1996. Вып. 7. 213 с
  3. Алексеев В. А. Диагностика жизненного состояния деревьев и древостоев // Лесоведение. 1989. № 4. С. 51-57
  4. Бендер О. Г., Горошкевич С. Н. Газообмен и содержание фотосинтетических пигментов у широтных экотипов кедра сибирского в опыте ex situ // Сиб. лесн. журн. 2020. № 5. С. 28-36
  5. Гродницкая И. Д., Кузнецова Г. В. Заболевания Pinus sylvestris L. и Pinus sibirica Du Tour в географических культурах и лесных питомниках Красноярского края и Хакасии // Хвойные бореал. зоны. 2012. Т. 27. № 3-4. С. 55-60
  6. Жук Е. А., Горошкевич С. Н. Факторы внутривидовой дифференциации кедра сибирского вдоль широтного и высотного профилей // Хвойные бореал. зоны. 2012. Т. 27. № 3-4. С. 61-66
  7. Ирошников А. И. Географические культуры хвойных в Сибири // Географические культуры и плантации хвойных в Сибири. Новосибирск: Наука. Сиб. отд-ние, 1977. С. 3-110
  8. Кривец С. А., Керчев И. А., Бисирова Э. М., Волкова Е. С., Мельник М. А., Смирнов Н. А., Пац Е. Н. Вспышка массового размножения и оценка риска распространения союзного короеда в кедровых лесах Томской области // Лесоведение. 2023. № 2. С. 116-131
  9. Кривец С. А., Коровинская Е. Н. Экология сибирского кедрового хермеса (Pineus cembrae Chol., Homoptera, Adelgidae) в селекционных культурах кедра сибирского в Томской области // Изв. СПбЛТА. 2009. № 187. С. 159-167
  10. Кузнецова Г. В. Опыт создания клоновой плантации кедровых сосен в Красноярской лесостепи // Хвойные бореал. зоны. 2007а. Т. 24. № 2-3. С. 217-224
  11. Кузнецова Г. В. Изучение изменчивости у климатипов кедра сибирского на юге Красноярского края // Хвойные бореал. зоны. 2007б. Т. 24. № 4-5. С. 423-426
  12. Малкина И. С. Газообмен и образование ассимилятов в разновозрастной хвое сосны обыкновенной // Лесоведение. 1984. № 6. С. 29-33
  13. Николаева М. А., Варенцова Е. Ю., Межина К. М. Оценка сохранности и состояния Pinus sibirica Du Tour в географических культурах Ленинградской области // Хвойные бореал. зоны. 2022. Т. 40. № 5. C. 381-387
  14. Петрова Е. А., Горошкевич С. Н., Белоконь М. М., Белоконь Ю. С., Политов Д. В. Генетическое разнообразие кедра сибирского Pinus sibirica Du Tour: распределение вдоль широтного и долготного профилей // Генетика. 2014. Т. 50. № 5. С. 538-553
  15. Тихонова И. В., Корец М. А. Изменчивость метеорологических условий произрастания хвойных пород в Средней Сибири с 1960 г. // Лесоведение. 2021. № 2. С. 173-186
  16. Федорков А. Л. Лесосеменное районирование сосны обыкновенной на севере Европы // Сиб. лесн. журн. 2020. № 2. С. 63-68
  17. Aitken S. N., Whitlock M. C. Assisted gene flow to facilitate local adaptation to climate change // Ann. Rev. Ecol. Evol. System. 2013. V. 44. P. 367-388
  18. Andersson G. B., Persson T., Fedorkov A., Mullin T. J. Longitudinal differences in Scots pine shoot elongation // Silva Fenn. 2018. V. 52. Iss. 5. Article 10040
  19. Atkin O. K., Tjoelker M. G. Thermal acclimation and the dynamic response of plant respiration to temperature // Trends Plant. Sci. 2003. V. 8. Iss. 7. P. 343-351
  20. Basler D., Korner C. Photoperiod sensitivity of bud burst in 14 temperate forest tree species // Agr. For. Meteorol. 2012. V. 165. P. 73-81
  21. Bossdorf O., Prati D., Auge H., Schmid B. Reduced competitive ability in an invasive plant // Ecol. Lett. 2004. V. 7. Iss. 4. P. 346-353
  22. Cannell M. C. R., Thompson S., Lines R. Heights of provenances and progenies of Pinus contorta in Britain correlated with seedling phenology and the duration of bud development // Silvae Gen. 1981. V. 30. Iss. 6. P. 166-173
  23. Chapin F. S., Matson P. A., Mooney H. A. Carbon inputs to ecosystems // Principles of terrestrial ecosystem ecology. Springer Verlag, 2002. Р. 123-156
  24. Chen Z., Grossfurthner L., Loxterman J. L., Masingale J., Richardson B. A., Seaborn T., Smith B., Waits L. P., Narum S. R. Applying genomics in assisted migration under climate change: Framework, empirical applications, and case studies // Evol. Appl. 2022. V. 15. Iss. 1. P. 3-21
  25. Chi Y., Xu M., Shen R., Yang Q., Huang B., Wan S. Acclimation of foliar respiration and photosynthesis in response to experimental warming in a temperate steppe in Northern China // PLoS ONE. 2013. V. 8. Iss. 2. Article e56482
  26. Crous K. Y., Quentin A. G., Lin Y. S., Medlyn B. E., Williams D. G., Barton C. V. M., Ellsworth D. S. Photosynthesis of temperate Eucalyptus globulus trees outside their native range has limited adjustment to elevated CO2 and climate warming // Global Change Biol. 2013. V. 19. Iss. 12. P. 3790-3807
  27. Evans P. M., Newton A. C., Cantarello E., Martin P., Sanderson N., Jones D. L. Thresholds of biodiversity and ecosystem function in a forest ecosystem undergoing dieback // Sci. Rep. 2017. V. 7. N. 1. Article 6775
  28. Gross C. L., Fatemi M., Simpson I. H. Seed provenance for changing climates: early growth traits of nonlocal seed are better adapted to future climatic scenarios, but not to current field conditions // Restor. Ecol. 2017. V. 25. Iss. 4. P. 577-586
  29. Hamilton J. A., El Kayal W., Hart A. T., Runcie D. E., Arango-Velez A., Cooke J. E. The joint influence of photoperiod and temperature during growth cessation and development of dormancy in white spruce (Picea glauca) // Tree Physiol. 2016. V. 36. Iss. 11. P. 1432-1448
  30. Hannerz M. Genetic and seasonal variation in hardiness and growth rhythm in boreal and temperate conifers: A review and annotated bibliography. Rep. N. 2. Skogforsk, 1998. 140 p
  31. Hanninen H. Effects of climatic change on trees from cool and temperate regions: an ecophysiological approach to modelling of bud burst phenology // Can. J. Bot. 1995. V. 73. N. 2. P. 183-199
  32. Hereford J. A quantitative survey of local adaptation and fitness trade-offs // Am. Naturalist. 2009. V. 173. Iss. 5. P. 579-588
  33. Johnson R., Stritch L., Olwell P., Lambert S., Horning M. E., Cronn R. What are the best seed sources for ecosystem restoration on BLM and USFS lands? // Native Plants J. 2010. V. 11. Iss. 2. P. 117-131
  34. Jones T. A. When local isn’t best // Evol. Appl. 2013. V. 6. Iss. 7. P. 1109-1118
  35. Joshi J., Schmid B., Caldeira M. C., Dimitrakopoulos P. G., Good J., Harris R., Hector A., Huss-Danell K., Jumpponen A., Minns A., Pereira J. S., Prinz A., Scherer-Lorenzen M., Siamantziouras A.-S. D., Terry A. C., Troumbis A. Y., Lawton J. H. Local adaptation enhances performance of common plant species // Ecol. Lett. 2001. V. 4. Iss. 6. P. 536-544
  36. Kagawa A., Sugimoto A., Maximov T. C. Seasonal course of translocation, storage and remobilization of 13C pulse-labeled photoassimilate in naturally growing Larix gmelinii saplings // New Phytol. 2006. V. 171. Iss. 4. P. 793-803
  37. Klapste J., Jaquish B., Porth I. Building resiliency in conifer forests: Interior spruce crosses among weevil resistant and susceptible parents produce hybrids appropriate for multi-trait selection // PLoS ONE. 2022. V. 18. N. 10. Article e0293160
  38. Klisz M., Chakraborty D., Cvjetkoviс B., Grabner M., Lintunen A., Mayer K., George J.-P., Rossi S. Functional traits of boreal species and adaptation to local conditions // Boreal forests in the face of climate change: Sustainable management / M. M. Girona, H. Morin, S. Gauthier, & Y. Bergeron (Eds.). V. 74. Springer Cham, 2023. P. 323-355
  39. Krankina O. N., Dixon R. K., Kirilenko A. P., Kobak K. I. Global climate change adaptation: examples from Russian boreal forests // Climatic Change. 1997. V. 36. N. 1. P. 197-216
  40. Lesser M. R., Parker W. H. Genetic variation in Picea glauca for growth and phenological traits from provenance tests in Ontario // Silvae Gen. 2004. V. 53. N. 4. P. 141-148
  41. Liang J., Xia J., Liu L., Wan S. Global patterns of the responses of leaf-level photosynthesis and respiration in terrestrial plants to experimental warming //j. Plant Ecol. 2013. V. 6. Iss. 6. P. 437-447
  42. Lowry D. B. Ecotypes and the controversy over stages in the formation of new species // Biol. J. Linnean Soc. 2012. V. 106. Iss. 2. P. 241-257
  43. McLane S. C., Aitken S. N. Whitebark pine (Pinus albicaulis) assisted migration potential: testing establishment north of the species range // Ecol. Appl. 2012. V. 22. Iss. 1. P. 142-153
  44. Montwé D., Isaac-Renton M., Hamann A., Spiecker H. Cold adaptation recorded in tree rings highlights risks associated with climate change and assisted migration // Nat.Comm. 2018. V. 9. N. 1. Article 1574
  45. Morgenstern E. K. Geographic variation in forest trees. Genetic basis and application of knowledge in silviculture. Vancouver: Univ. British Columbia Press, 1996. 214 p
  46. Mutke S., Gordo J., Climent J., Gil L. Shoot growth and phenology modelling of grafted Stone pine (Pinus pinea L.) in Inner Spain // Ann. For. Sci. 2003. V. 60. Iss. 6. Р. 527-537
  47. Oleksyn J., Modrzynski J., Tjoelker M. G., Zytkowiak R., Reich P. B., Karolewski P. Growth and physiology of Picea abies populations from elevational transects: common garden evidence for altitudinal ecotypes and cold adaptation // Funct. Ecol. 1998. V. 12. Iss. 4. P. 573-590
  48. Partanen J., Koski V., Hanninen H. Effects of photoperiod and temperature on the timing of bud burst in Norway spruce (Picea abies) // Tree Physiol. 1998. V. 18. Iss. 12. P. 811-816
  49. Partanen J., Leinonen I., Repo T. Effect of accumulated duration of the light period on bud burst in Norway spruce (Picea abies) of varying ages // Silva Fenn. 2001. V. 35. N. 1. Article 608
  50. Petrova E. A., Goroshkevich S. N., Belokon M. M. Belokon Yu. S., Politov D. V. Distribution of the genetic diversity of the Siberian stone pine, Pinus sibirica Du Tour, along the latitudinal and longitudinal profiles // Rus. J. Genet. 2014. V. 50. Iss. 5. P. 467-482 (Original Rus. text © E. A. Petrova, S. N. Goroshkevich, M. M. Belokon, Yu. S. Belokon, D. V. Politov, 2014, publ. in Genetika. 2014. V. 50. N. 5. P. 538-553)
  51. Rehfeldt G. E. Genetic differentiation among populations of Pinus ponderosa from Upper Colorado river basin // Bot. Gazet. 1990. V. 151. N. 1. P. 125-137
  52. Rehfeldt G. E., Leites L. P., Bradley St Clair J., Jaquish B. C., Sáenz-Romero C., López-Upton J., Joyce D. G.Comparative genetic responses to climate in the varieties of Pinus ponderosa and Pseudotsuga menziesii: clines in growth potential // For. Ecol. Manag. 2014. V. 324. P. 138-146
  53. Reich P. B, Oleksyn J., Tjoelker M. G. Needle respiration and nitrogen concentration in Scots pine populations from a broad latitudinal range: a common garden test with field-grown trees // Funct. Ecol. 1996. V. 10. N. 6. P. 768-776
  54. Richardson A. D., Hollinger D. Y., Dail D. B., Lee J. T., Munger J. W., O’Keefe J. Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests // Tree Physiol. 2009. V. 29. Iss. 3. P. 321-331
  55. Saxe H., Cannell M. G. R., Johnsen O., Ryan M. G., Vourlitis G. Tree and forest functioning in response to global warming // New Phytol. 2001. V. 149. Iss. 3. P. 369-399
  56. Schwalm C., Ek A. R. Climate change and site: relevant mechanisms and modelling techniques // For. Ecol. Manag. 2001. V. 150. Iss. 3. Р. 241-257
  57. Schwinning S., Lortie C. J., Esque T. C., DeFalco L. A. What common-garden experiments tell us about climate responses in plants //j. Ecol. 2022. V. 110. Iss. 5. P. 986-996
  58. Skulason B., Hansen O. K., Nielsen U. B. Provenance variation in phenology and frost tolerance in Subalpine fir (Abies lasiocarpa) planted in Denmark and Iceland // Forests. 2018. V. 9. Iss. 1. Article 17
  59. Svystun T., Lundstromer J., Berlin M., Westin J., Jönsson A. M. Model analysis of temperature impact on the Norway spruce provenance specific bud burst and associated risk of frost damage // For. Ecol. Manag. 2021. V. 493. Iss. 6. Article 119252
  60. Teskey R. O., Will R. E. Acclimation of loblolly pine (Pinus taeda) seedlings to high temperatures // Tree Physiol. 1999. V. 19. Iss. 8. P. 519-525
  61. Tjoelker M. G., Oleksyn J., Reich P. B., Zytkowiak R. Coupling of respiration, nitrogen, and sugars underlies convergent temperature acclimation in Pinus banksiana across wide-ranging sites and populations // Global Change Biol. 2008. V. 14. Iss. 4. P. 782-797
  62. Way D. A., Oren R. Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data // Tree Physiol. 2010. V. 30. Iss. 6. P. 669-688
  63. Wuhlisch G. von, Krusche D., Muhs H. J. Variation in temperature sum requirement for flushing of beech provenances // Silvae Genet. 1995. V. 44. N. 5-6. P. 343-346
  64. Ying C. C., Yanchuk A. D. The development of British Columbia’s tree seed transfer guidelines: purpose, concept, methodology, and implementation // For. Ecol. Manag. 2006. V. 227. Iss. 1-2. P. 1-13
  65. Zhang X. W., Wang J. R., Ji M. F., Milne R. I., Wang M. H., Liu J. Q., Shi S., Yang S.-L., Zhao C.-M. Higher thermal acclimation potential of respiration but not photosynthesis in two alpine Picea taxa in contrast to two lowland congeners // PLoS ONE. 2015. V. 10. N. 4. Article e0123248
  66. Zhuk E. Shoot structure variation in latitudinal and longitudinal ecotypes of Pinus sibirica in common garden experiment // Forestist. 2020. V. 70. N. 2. P. 160-165

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».