Microbiological Profile of the Implantation Zone under Different Mechanical Compression of Percutaneous Implants
- Authors: Stogov M.V.1, Emanov A.A.1, Goodovykh N.V.1, Ovchinnikov E.N.1, Tushina N.V.1, Kuznetsov V.P.1,2
-
Affiliations:
- National Ilizarov Medical Research Centre for Traumatology and Ortopaedics
- Ural Federal University named after the first President of Russia B.N. Yeltsin
- Issue: Vol 28, No 2 (2022)
- Pages: 38-47
- Section: Theoretical and experimental studies
- URL: https://journal-vniispk.ru/2311-2905/article/view/124865
- DOI: https://doi.org/10.17816/2311-2905-1725
- ID: 124865
Cite item
Abstract
Background. Infection of percutaneous implants in patients with limb amputation is the most common complication.
This study aimed to evaluate the microbiological contamination of the implantation zone depending on the implant mechanical compression under the conditions of the additional external fixation.
Methods. The study was performed on 36 male rabbits. The tibia of all the rabbits was sawn at the border of the upper and middle parts. The medullary canal was reamed and a percutaneous implant was placed in the tibial stump. The segment and the implant were fixed with an Ilizarov apparatus. An additional compression device was installed in 30 animals. We used 5 compression modes, accordingly, 6 experimental groups were formed, 6 animals in each: group 1 — without compression, group 2 — compression on the implant with force of 0.053 N/mm2, group 3 — compression on the implant with force of 0.105 N/mm2, group 4 — compression on the implant with force of 0.158 N/mm2, group 5 — compression on the implant with force of 0.211 N/mm2, group 6 — compression on the implant with force of 0.263 N/mm2. The restraint was removed 6 weeks after implantation for a total follow-up of 26 weeks. The microflora of the place where the implant enters the skin (the implant / skin interface) was investigated, the level of blood leukocytes and the level of C-reactive protein in blood serum were determined.
Results. On days 9-10 after implantation, significant differences in the microbial landscape were found at the site of the exit of the metal implant in animals of different groups. The largest number of strains was found in animals of groups 1, 5 and 6, the smallest in groups 2 and 3. The most frequently detected strains: S. saprophyticus and Enterococcus spp. It was found that the greatest statistically significant increase in the level of CRP in the blood serum was observed in animals of group 6. The level of leukocytes in animals of all groups did not change statistically significantly relative to preoperative values. Animals with better osseointegration (groups 2 and 3 — no cases of implant loss) showed a minimal number of growing strains.
Conclusions. The microbiological profile of the implantation zone of percutaneous implants changes depending on the amount of mechanical compression. The optimal mode is 0.053-0.105 N/mm2.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Maksim V. Stogov
National Ilizarov Medical Research Centre for Traumatology and Ortopaedics
Author for correspondence.
Email: stogo_off@list.ru
ORCID iD: 0000-0001-8516-8571
SPIN-code: 9345-8300
Scopus Author ID: 26024482600
ResearcherId: N-5847-2018
Dr. Sci. (Biol.)
Russian Federation, 6, M. Ulyanova str., Kurgan, 640014Andrey A. Emanov
National Ilizarov Medical Research Centre for Traumatology and Ortopaedics
Email: a_eman@list.ru
ORCID iD: 0000-0003-2890-3597
SPIN-code: 1151-7941
Scopus Author ID: 55963731500
ResearcherId: H-2378-2018
Cand. Sci. (Vet.)
Russian Federation, 6, M. Ulyanova str., Kurgan, 640014Natalia V. Goodovykh
National Ilizarov Medical Research Centre for Traumatology and Ortopaedics
Email: natalia_nvn@mail.ru
ORCID iD: 0000-0001-8512-4165
SPIN-code: 2642-3640
Scopus Author ID: 56403259900
ResearcherId: ACV-8266-2022
junior researcher
Russian Federation, 6, M. Ulyanova str., Kurgan, 640014Evgenyi N. Ovchinnikov
National Ilizarov Medical Research Centre for Traumatology and Ortopaedics
Email: omu00@list.ru
ORCID iD: 0000-0002-5595-1706
SPIN-code: 9560-3360
Scopus Author ID: 57194208169
ResearcherId: L-5439-2015
Cand. Sci. (Biol.)
Russian Federation, 6, M. Ulyanova str., Kurgan, 640014Natalia V. Tushina
National Ilizarov Medical Research Centre for Traumatology and Ortopaedics
Email: ntushina76@mail.ru
ORCID iD: 0000-0002-1322-608X
SPIN-code: 7554-9130
Scopus Author ID: 44062153800
ResearcherId: AAF-1375-2020
Cand. Sci. (Biol.)
Russian Federation, 6, M. Ulyanova str., Kurgan, 640014Viktor P. Kuznetsov
National Ilizarov Medical Research Centre for Traumatology and Ortopaedics; Ural Federal University named after the first President of Russia B.N. Yeltsin
Email: wpkuzn@mail.ru
ORCID iD: 0000-0001-8949-6345
SPIN-code: 7321-4466
Scopus Author ID: 57191966571
ResearcherId: AAE-8174-2020
Dr. Sci. (Tech.)
Russian Federation, 6, M. Ulyanova str., Kurgan, 640014; EkaterinburgReferences
- Zaid M.B., O’Donnell R.J., Potter B.K., Forsberg J.A. Orthopaedic osseointegration: state of the art. J Am Acad Orthop Surg. 2019;27(22):e977-985. doi: 10.5435/JAAOS-D-19-00016.
- Корюков А.А., Губин А.В., Кузнецов В.П., Борзунов Д.Ю., Антипов А.В., Овчинников Е.Н. и др. Возможности улучшения функции и косметики культей пальцев кисти методом оссеоинтеграции. Гений ортопедии. 2016;(4):22-28. doi: 10.18019/1028-4427-2016-4-22-28. Koriukov A.A., Gubin A.V., Kuznetsov V.P., Borzunov D.Iu., Antipov A.V., Ovchinnikov E.N. et al. [Possibilities of improving the function and esthetic appearance of finger stumps using the method of osseointegration]. Genij Ortopedii. 2016;(4):22-28. (In Russian). doi: 10.18019/1028-4427-2016-4-22-28.
- Branemark R., Berlin O., Hagberg K., Bergh P., Gunterberg B., Rydevik B. A novel osseointegrated percutaneous prosthetic system for the treatment of patients with transfemoral amputation: a prospective study of 51 patients. Bone Joint J. 2014;96-B(1):106-113. doi: 10.1302/0301-620X.96B1.31905.
- Hoyt B.W., Walsh S.A., Forsberg J.A. Osseointegrated prostheses for the rehabilitation of amputees (OPRA): results and clinical perspective. Expert Rev Med Devices. 2020;17(1):17-25. doi: 10.1080/17434440.2020.1704623.
- Reif T.J., Khabyeh-Hasbani N., Jaime K.M., Sheridan G.A., Otterburn D.M., Rozbruch S.R. Early experience with femoral and tibial bone-anchored osseointegration prostheses. JBJS Open Access. 2021;6(3):e21.00072. doi: 10.2106/JBJS.OA.21.00072.
- Diaz Balzani L., Ciuffreda M., Vadalà G., Di Pino G., Papalia R., Denaro V. Osseointegration for lower and upper-limb amputation a systematic review of clinical outcomes and complications. J Biol Regul Homeost Agents. 2020;34(4 Suppl. 3):315-326.
- Hebert J.S., Rehani M., Stiegelmar R. Osseointegration for lower-limb amputation: a systematic review of clinical outcomes. JBJS Rev. 2017;5(10):e10. doi: 10.2106/JBJS.RVW.17.00037.
- Ontario Health (Quality). Osseointegrated prosthetic implants for people with lower-limb amputation: a health technology assessment. Ont Health Technol Assess Ser. 2019;19(7):1-126. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6939984/.
- Calabrese G., Franco D., Petralia S., Monforte F., Condorelli G.G., Squarzoni S. et al. Dual-functional nano-functionalized titanium scaffolds to inhibit bacterial growth and enhance osteointegration. Nanomaterials (Basel). 2021;11(10):2634. doi: 10.3390/nano11102634.
- Fischer N.G., Chen X., Astleford-Hopper K., He J., Mullikin A.F., Mansky K.C. et al. Antimicrobial and enzyme-responsive multi-peptide surfaces for bone-anchored devices. Mater Sci Eng C Mater Biol Appl. 2021;125:112108. doi: 10.1016/j.msec.2021.112108.
- Song Y.W., Paeng K.W., Kim M.J., Cha J.K., Jung U.W., Jung R.E. et al. Secondary stability achieved in dental implants with a calcium-coated sandblasted, large-grit, acid-etched (SLA) surface and a chemically modified SLA surface placed without mechanical engagement: A preclinical study. Clin Oral Implants Res. 2021;32(12):1474-1483. doi: 10.1111/clr.13848.
- Wang X., Ning B., Pei X. Tantalum and its derivatives in orthopedic and dental implants: osteogenesis and antibacterial properties. Colloids Surf B Biointerfaces. 2021;208:112055. doi: 10.1016/j.colsurfb.2021.112055.
- Li Y., Branemark R. Osseointegrated prostheses for rehabilitation following amputation: the pioneering Swedish model. Unfallchirurg. 2017;120(4):285-292. doi: 10.1007/s00113-017-0331-4.
- Thesleff A., Branemark R., Hakansson B., Ortiz-Catalan M. Biomechanical characterisation of bone-anchored implant systems for amputation limb prostheses: a systematic review. Ann Biomed Eng. 2018;46(3): 377-391. doi: 10.1007/s10439-017-1976-4.
- Branemark R.P., Hagberg K., Kulbacka-Ortiz K., Berlin O., Rydevik B. Osseointegrated percutaneous prosthetic system for the treatment of patients with transfemoral amputation: a prospective five-year follow-up of patient-reported outcomes and complications. J Am Acad Orthop Surg. 2019;27(16):e743-e751. doi: 10.5435/JAAOS-D-17-00621.
- Meric G., Mageiros L., Pensar J., Laabei M., Yahara K., Pascoe B. et al. Disease-associated genotypes of the commensal skin bacterium Staphylococcus epidermidis. Nature Communications. 2018;9(1):5034. doi: 10.1038/s41467-018-07368-7.
- Zaborowska M., Tillander J., Branemark R., Hagberg L., Thomsen P., Trobos M. Biofilm formation and antimicrobial susceptibility of staphylococci and enterococci from osteomyelitis associated with percutaneous orthopaedic implants. J Biomed Mater Res Part B. 2017;105(8):2630-2640. doi: 10.1002/jbm.b.33803.
- Tillander J., Hagberg K., Berlin O., Hagberg L., Branemark R. Osteomyelitis risk in patients with transfemoral amputations treated with osseointegration prostheses. Clin Orthop Relat Res. 2017;475(12):3100-3108. doi: 10.1007/s11999-017-5507-2.
- Egert M., Simmering R., Riedel C.U. The association of the skin microbiota with health, immunity, and disease. Clin Pharmacol Ther. 2017;102(1):62-69. doi: 10.1002/cpt.698.
- Dantas T., Padrao J., da Silva M.R., Pinto P., Madeira S. et al. Bacteria co-culture adhesion on different texturized zirconia surfaces. J Mech Behav Biomed Mater. 2021;123:104786. doi: 10.1016/j.jmbbm.2021.104786.
- Pääkkönen M., Kallio M.J., Kallio P.E., Peltola H. C-reactive protein versus erythrocyte sedimentation rate, white blood cell count and alkaline phosphatase in diagnosing bacteraemia in bone and joint infections. J Paediatr Child Health. 2013;49(3):E189-192. doi: 10.1111/jpc.12122.
- Гаюк В.Д., Клюшин Н.М., Бурнашов С.И. Воспаление мягких тканей вокруг чрескостных элементов и спицевой остеомиелит: литературный обзор. Гений ортопедии. 2019;25(3):407-412. doi: 10.18019/1028-4427-2019-25-3-407-412. Gayuk V.D., Kliushin N.M., Burnashov S.I. [Pin site soft tissue infection and osteomyelitis: literature review]. Genij Ortopedii. 2019;25(3):407-412. (In Russian). doi: 10.18019/1028-4427-2019-25-3-407-412.
- Overmann A.L., Aparicio C., Richards J.T., Mutreja I., Fischer N.G., Wade S.M. et al. Orthopaedic osseointegration: Implantology and future directions. J Orthop Res. 2020;38(7):1445-1454. doi: 10.1002/jor.24576.
- Lenneras M., Tsikandylakis G., Trobos M., Omar O., Vazirisani F., Palmquist A. et al. The clinical, radiological, microbiological, and molecular profile of the skin-penetration site of transfemoral amputees treated with bone-anchored prostheses. J Biomed Mater Res A. 2017;105(2):578-589. doi: 10.1002/jbm.a.35935.
- Gristina A.G. Biomaterial-centered infection: microbial adhesion versus tissue integration. Science. 1987;237(4822):1588-1595. doi: 10.1126/science.3629258.
- Pilz M., Staats K., Tobudic S., Assadian O., Presterl E., Windhager R. et al. Zirconium nitride coating reduced staphylococcus epidermidis biofilm formation on orthopaedic implant surfaces: an in vitro study. Clin Orthop Relat Res. 2019;477(2):461-466. doi: 10.1097/CORR.0000000000000568.
- Rochford E.T., Subbiahdoss G., Moriarty T.F., Poulsson A.H., van der Mei H.C., Busscher H.J. et al. An in vitro investigation of bacteria-osteoblast competition on oxygen plasma-modified PEEK. J Biomed Mater Res A. 2014;102(12):4427-4434. doi: 10.1002/jbm.a.35130.
- Subbiahdoss G., Kuijer R., Busscher H., van der Mei H. Mammalian cell growth versus biofilm formation on biomaterial surfaces in an in vitro post-operative contamination model. Microbiology. 2010;156 (Pt 10):3073-3078. doi: 10.1099/mic.0.040378-0.
- Campoccia D., Testoni F., Ravaioli S., Cangini I., Maso A., Speziale P. et al. Orthopedic implant infections: incompetence of Staphylococcus epidermidis, Staphylococcus lugdunensis, and Enterococcus faecalis to invade osteoblasts. J Biomed Mater Res A. 2016;104(3):788-801. doi: 10.1002/jbm.a.35564.
- Stracquadanio S., Musso N., Costantino A., Lazzaro L.M., Stefani S., Bongiorno D. Staphylococcus aureus internalization in osteoblast cells: mechanisms, interactions and biochemical processes. What did we learn from experimental models? Pathogens. 2021;10(2):239. doi: 10.3390/pathogens10020239.
- Hinton P.V., Rackard S.M., Kennedy O.D. In vivo osteocyte mechanotransduction: recent developments and future directions. Curr Osteoporos Rep. 2018;16(6):746-753. doi: 10.1007/s11914-018-0485-1.
- Maycas M., Esbrit P., Gortázar A.R. Molecular mechanisms in bone mechanotransduction. Histol Histopathol. 2017;32(8):751-760. doi: 10.14670/HH-11-858.
- Somemura S., Kumai T., Yatabe K., Sasaki C. Fujiya H., Niki H. et al. Physiologic mechanical stress directly induces bone formation by activating glucose transporter 1 (GLUT 1) in osteoblasts, inducing signaling via NAD+-dependent deacetylase (Sirtuin 1) and Runt-Related Transcription Factor 2 (Runx2). Int J Mol Sci. 2021;22(16):9070. doi: 10.3390/ijms22169070.
- Солдатов Ю.П., Стогов М.В., Овчинников Е.Н., Губин А.В., Городнова Н.В. Аппарат внешней фиксации конструкции Г.А. Илизарова. Оценка клинической эффективности и безопасности (обзор литературы). Гений ортопедии. 2019;25(4):588-599. doi: 10.18019/1028-4427-2019-25-4-588-599. Soldatov Yu.P., Stogov M.V., Ovchinnikov E.N., Gubin A.V., Gorodnova N.V. [Evaluation of clinical efficacy and safety of the Ilizarov apparatus for external fixation (literature review)]. Genij Ortopedii. 2019;25(4):588-599. (In Russian). doi: 10.18019/1028-4427-2019-25-4-588-599.
Supplementary files
