Сравнение двухэнергетических денситометров различных моделей

Обложка

Цитировать

Полный текст

Аннотация

Актуальность. Двухэнергетическая рентгеновская абсорбциометрия (ДРА) — это эффективный метод оценки минеральной плотности костной ткани (МПК) и подкожно-жировой клетчатки (ПЖК). Постоянное развитие новых методов денситометрии, старение населения и высокий потенциал применения технологий искусственного интеллекта в здравоохранении усиливают потребности в получении высококачественных измерений МПК в ДРА.

Цель исследования — разработать средства и методы контроля ДРА сканеров и провести сравнение четырех денситометров разной геометрии и фирм-производителей при моделировании различного водно-жирового окружения.

Материал и методы. В ходе работы проведена оценка точности (относительной погрешности (ε%) и воспроизводимости (CV%)) измерений МПК четырех рентгеновских денситометров: два — с узковеерным пучком рентгеновского излучения с 64- и 16 рядами детекторов (DXA-1, DXA-2), один — с широковеерным пучком (DXA-3); один — с пучком карандашного типа (DXA-4). Для сравнения использовался фантом PHK (PHantom Kalium), моделирующий МПК поясничной области: четыре модели позвонков от нормы до остеопороза, содержащие гидрофосфат калия в различной концентрации — 50–200 мг/мл. PHK также включал парафиновые накладки (толщиной 40 мм), имитирующие ПЖК.

Результаты. DXA-1 и DXA-2 имеют наилучшую CV%, определенную в диапазоне от 0,56% до 1,05%. Наименьшая ε% отмечена при сканировании PHK с ПЖК для DXA-1 и DXA-2 (1,74% и 0,85%) и DXA-4 (1,47%). При исключении ПЖК наблюдаются снижение МПК для DXA-1 и DXA-2 (ε = -5,11% и -6,12% соответственно) и небольшое отклонение (p = 0,80) для DXA-4 (ε = 0,87%). DXA-3 демонстрирует существенно заниженные данные измеренной МПК (ε = -14,56%; p = 0,000) при сканировании PHK с ПЖК. Однако исключение ПЖК также приводит к значительному (p = 0,000) снижению МПК (ε = -16,44%; p = 0,000). При анализе точности определения жирового слоя для DXA-1, DXA-2, DXA-4 отмечалась незначительная недооценка заданных показателей на -5,9%, -6,3% и -2,3% соответственно. При этом CV результатов составила 0,15%; 0,39%; 1,6%.

Заключение. Результаты исследования подтвердили значительную недооценку МПК для всего диапазона возможных значений при сканировании PHK без ПЖК. Модели продемонстрировали высокую точность измерения жирового слоя за исключением DXA-3 сканера, для которого этот параметр в исследовании не оценивался.

Об авторах

Алексей Владимирович Петряйкин

ГБУЗ «Научно-практический клинический центр диагностики и телемедицинских технологий Департамента здравоохранения г. Москвы»

Email: alexeypetraikin@gmail.com
ORCID iD: 0000-0003-1694-4682
SPIN-код: 6193-1656
Scopus Author ID: 6507474696
ResearcherId: P-7759-2017

канд. мед. наук

Россия, Москва

Екатерина Сергеевна Ахмад

ГБУЗ «Научно-практический клинический центр диагностики и телемедицинских технологий Департамента здравоохранения г. Москвы»

Автор, ответственный за переписку.
Email: e.ahmad@npcmr.ru
ORCID iD: 0000-0002-8235-9361
SPIN-код: 5891-4384
Scopus Author ID: 56964518000
ResearcherId: P-7313-2017

Cand. Sci. (Med.)

Россия, 127051, Москва, ул. Петровка, д. 24

Дмитрий Сергеевич Семенов

ГБУЗ «Научно-практический клинический центр диагностики и телемедицинских технологий Департамента здравоохранения г. Москвы»

Email: d.semenov@npcmr.ru
ORCID iD: 0000-0002-4293-2514
SPIN-код: 2278-7290
ResearcherId: P-5228-2017

научный сотрудник, отдел инновационных технологий

Россия, Москва

Злата Романовна Артюкова

ГБУЗ «Научно-практический клинический центр диагностики и телемедицинских технологий Департамента здравоохранения г. Москвы»

Email: zl.artyukova@gmail.com
ORCID iD: 0000-0003-2960-9787
SPIN-код: 7550-2441
Scopus Author ID: 57221433873

младший научный сотрудник, отдел инновационных технологий

Россия, Москва

Никита Дмитриевич Кудрявцев

ГБУЗ «Научно-практический клинический центр диагностики и телемедицинских технологий Департамента здравоохранения г. Москвы»

Email: n.kudryavtsev@npcmr.ru
ORCID iD: 0000-0003-4203-0630
SPIN-код: 1125-8637
Scopus Author ID: 57213148303
ResearcherId: AAG-1869-2020

младший научный сотрудник, отдел инновационных технологий

Россия, Москва

Федор Алексеевич Петряйкин

ФГБОУ ВО «Московский государственный университет им М.В. Ломоносова»

Email: feda.petraykin@gmail.com
ORCID iD: 0000-0001-6923-3839
Россия, Москва

Людмила Арсеньевна Низовцова

ГБУЗ «Научно-практический клинический центр диагностики и телемедицинских технологий Департамента здравоохранения г. Москвы»

Email: nizovtsova@npcmr.ru
ORCID iD: 0000-0002-9614-4505
SPIN-код: 9957-8107
Scopus Author ID: 6602750908
ResearcherId: T-8987-2017

д-р мед. наук, профессор

Россия, Москва

Список литературы

  1. Мельниченко Г.А., Белая Ж.Е., Рожинская Л.Я., Торопцова Н.В., Алексеева Л.И., Бирюкова Е.В. и др. Федеральные клинические рекомендации по диагностике, лечению и профилактике остеопороза. Проблемы эндокринологии. 2017;63(6):392-426. doi: 10.14341/probl2017636392-426. Mel’nichenko G.A., Belaya Zh.E., Rozhinskaya L.Ya., Toroptsova N.V., Alekseeva L.I., Biryukova E.V. et al. [Russian federal clinical guidelines on the diagnostics, treatment, and prevention of osteoporosis]. Problemy Endokrinologii [Problems of Endocrinology]. 2017;63(6):392-426. (In Russian). doi: 10.14341/probl2017636392-426.
  2. ISCD Official Positions - Adult - International Society for Clinical Densitometry (ISCD, 2019). Available from: https://iscd.app.box.com/s/5r713cfzvf4gr28q7zdccg2i7169fv86.
  3. Mattsson S., Thomas B.J. Development of methods for body composition studies. Phys Med Biol. 2006;51(13): R203-R228. doi: 10.1088/0031-9155/51/13/R13.
  4. Park A.J., Choi J.H., Kang H., Park K.J., Kim H.Y., Kim S.H. et al. Result of Proficiency Test and Comparison of Accuracy Using a European Spine Phantom among the Three Bone Densitometries. J Bone Metab. 2015;22(2): 45-49. doi: 10.11005/jbm.2015.22.2.45.
  5. Krueger D., Vallarta-Ast N., Checovich M., Gemar D., Binkley N. BMD measurement and precision: a comparison of GE Lunar Prodigy and iDXA densitometers. J Clin Densitom. 2012;15(1):21-25. doi: 10.1016/j.jocd.2011.08.003.
  6. Laugerette A., Schwaiger B.J., Brown K., Frerking L.C., Kopp F.K., Mei K. et al. DXA-equivalent quantification of bone mineral density using dual-layer spectral CT scout scans. Eur Radiol. 2019;29(9):4624-4634. doi: 10.1007/s00330-019-6005-6.
  7. Петряйкин А.В., Смолярчук М.Я., Петряйкин Ф.А., Низовцова Л.А., Артюкова З.Р., Сергунова К.А. и др. Оценка точности денситометрических исследований. Применение фантома РСК ФК2. Травматология и ортопедия России. 2019;25(3):124-134. doi: 10.21823/2311-2905-2019-25-3-124-134. Petraikin A.V., Smolyarchuk М.J., Petryaykin F.A., Nizovtsova L.A., Artyukova Z.R., Sergunova К.A. et al. [Assessment the accuracy of Densitometry Measurements using DMA PP2 Phantom]. Travmatologiya i ortopediya Rossii [Traumatology and orthopedics of Russia]. 2019;25(3):124-134. (In Russian). doi: 10.21823/2311-2905-2019-25-3-124-134.
  8. Закроева А.Г., Бабалян В.Н., Габдулина Г.Х., Лобанченко О.В., Ершова О.Б., Исаева C.М. и др. Состояние проблемы остеопороза в странах Евразийского региона. Остеопороз и остеопатии. 2020;23(4):19-29. doi: 10.14341/osteo12700. Zakroyeva A.G., Babalyan V., Gabdulina G., Lobanchenko О., Ershova О.B., Issaeva S. et al. [Burden of Osteoporosis in the Countries of the Eurasian Region]. Osteoporoz i osteopatii [Osteoporosis and Bone Diseases]. 2020;23(4):19-29. (In Russian). doi: 10.14341/osteo12700.
  9. Kanis J.A., Johnell O. Requirements for DXA for the management of osteoporosis in Europe. Osteoporosis Int. 2005;16(3):229-238. doi: 10.1007/s00198-004-1811-2.
  10. Гусев А.В., Зарубина Т.В. Поддержка принятия врачебных решений в медицинских информационных системах медицинской организации. Врач и информационные технологии. 2017;(2):60-72. Gusev А.V., Zarubina Т.V. [Clinical decisions support in medical information systems of a medical organisation]. Vrach i informatsionnye tekhnologii [Information technologies for the Physician]. 2017;(2):60-72. (In Russian).
  11. Halldorsson B.V., Bjornsson A.H., Gudmundsson H.T., Birgisson E.O., Ludviksson B.R., Gudbjornsson B. A clinical decision support system for the diagnosis, fracture risks and treatment of osteoporosis. Comput Math Methods Med. 2015;2015:189769. doi: 10.1155/2015/189769.
  12. Dequeker J., Reeve J., Pearson J., Bright J., Felsenberg D., Kalender W. et al. Comac-Bme Quantitative Assessment Of Osteoporosis Study Group. Multicentre European COMAC-BME study on the standardisation of bone densitometry procedures. Technol Health Care. 1993;1(2):127-131. doi: 10.3233/THC-1993-1202.
  13. Kalender W.A., Felsenberg D., Genant H.K., Fischer M., Dequeker J., Reeve J. The European Spine Phantom--a tool for standardization and quality control in spinal bone mineral measurements by DXA and QCT. Eur J Radiol. 1995;20(2):83-92. doi: 10.1016/0720-048x(95)00631-y.
  14. Hind K., Cooper W., Oldroyd B., Davies A., Rhodes L. A cross-calibration study of the GE-lunar iDXA and prodigy for the assessment of lumbar spine and total hip bone parameters via three statistical methods. J Clin Densitom. 2015;18(1):86-92. doi: 10.1016/j.jocd.2013.09.011.
  15. Pearson D., Cawte S.A., Green D.J. A comparison of phantoms for cross-calibration of lumbar spine DXA. Osteoporosis Int. 2002;13(12):948-954. doi: 10.1016/10.1007/s001980200132.
  16. Kolta S., Ravaud P., Fechtenbaum J., DougadosM., Roux C. Accuracy and precision of 62 bone densitometers using a European Spine Phantom. Osteoporosis Int. 1999;10(1):14-19. doi: 10.1007/s001980050188.
  17. Van Hamersvelt R.W., Schilham A.M.R., Engelke K., den Harder A.M., de Keizer B., Verhaar H.J. et al. Accuracy of bone mineral density quantification using dual-layer spectral detector CT: a phantom study. Eur Radiol. 2017;27(10):4351-4359. doi: 10.1007/s00330-017-4801-4.
  18. Никитинская О.А., Торопцова Н.В. В помощь практикующему врачу: возможность мониторирования лечения остеопороза при исследовании минеральной плотности кости на разных аксиальных денситометрах. Медицинский алфавит. 2019;2(37):22-28. doi: 10.33667/2078-5631-2019-2-37(412)-22-28. Nikitinskaya O.A., Toroptsova N.V. [To help practitioner: monitoring treatment of osteoporosis in study of bone mineral density on different axial densitometers]. Meditsinskii alfavit [Medical Alphabet]. 2019;37(2):22-28. (In Russian). doi: 10.33667/2078–5631–2019–2–37(412)-22–28.
  19. Yu E.W., Bijoy J.T., Brown J.K., Finkelstein J.S. Simulated increases in body fat and errors in bone mineral density measurements by DXA and QCT. J Bone Miner Res. 2012;27(1):119-124. doi: 10.1002/jbmr.506.
  20. Guerrero-Pérez F., Casajoana A., Gómez-Vaquero C., Virgili N., López-Urdiales R., Hernández-Montoliu L. et al. Long-Term Effects in Bone Mineral Density after Different Bariatric Procedures in Patients with Type 2 Diabetes: Outcomes of a Randomized Clinical Trial. J Clin Med. 2020;9(6):1830. doi: 10.3390/jcm9061830.
  21. Yu E.W., Bouxsein M.L., Roy A.E., Baldwin C., Cange A., Neer R.M. et al. Bone loss after bariatric surgery: discordant results between DXA and QCT bone density. J Bone Miner Res. 2014;29(3):542-550. doi: 10.1002/jbmr.2063.
  22. Helba M., Binkovitz L.A. Pediatric body composition analysis with dual-energy X-ray absorptiometry. Pediatr Radiol. 2009;39(7):647-656. doi: 10.1007/s00247-009-1247-0.
  23. Lifshitz F., Hecht J.P., Bermúdez E.F., Gamba C.A., Reinoso J.M., Casavalle P.L. et al. Body composition analysis by dual-energy X-ray absorptiometry in young preschool children. Eur J Clin Nutr. 2016;70(10):1203-1209. doi: 10.1038/ejcn.2016.38.
  24. Marzetti E., Calvani R., Tosato M., Cesari M., Di Bari M., Cherubini A. et al. Sarcopenia: an overview. Aging Clin Exp Res. 2017;29(1):11-17. doi: 10.1007/s40520-016-0704-5.
  25. Krueger D., Libber J., Sanfilippo J., Yu H.J., Horvath B., Miller C.G. et al. A DXA Whole Body Composition Cross-Calibration Experience: Evaluation With Humans, Spine, and Whole Body Phantoms. J Clin Densitom. 2016;19(2):220-225. doi: 10.1016/j.jocd.2015.04.003.
  26. Аврунин А.С., Тихилов Р.М., Шубняков И.И., Карагодина М.П., Плиев Д.Г., Товпич И.Д. Ошибка воспроизводимости аппаратно-программного комплекса Lunar Prodigy (version Encore) (Prodigy) при исследовании фантомов и костных структур. Гений ортопедии. 2010;(4):104-110. Avrunin A.S., Tikhilov R.M., Shubniakov I.I., Karagodina M.P., Pliyev D.G., Tovpich I.D. [Reproducibility error of Lunar Prodigy (Version Encore) (Prodigy) apparatus-programming complex in studying phantoms and bone structures]. Genij Ortopedii. 2010;(4):104-110. (In Russian).

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Конструкция фантома PHK: 1 — секция «позвонков», состоящая из цилиндра, имитирующего тело позвонка, и параллелепипеда, имитирующего кортикальный слой кости; 2 — «позвонки» помещены в цилиндр с водой диаметром 190 мм при сканировании в денситометре без подкожно-жировой клетчатки; 3 — вокруг циллиндра возможно размещение парафиновых накладок, имитирующих подкожно-жировую клетчатку, толщиной 40 мм

Скачать (33KB)
3. Рис. 2. Изображения, полученные в результате сканирования фантома PHK без моделирования подкожно-жировой клетчатки на денситометрах: a — DXA-1; b — DXA-2; c — DXA-3; d — DXA-4

Скачать (26KB)
4. Рис. 3. Результаты измерений минеральной плотности кости на денситометрах разных типов: a — DXA-1; b — DXA-2; c — DXA-3; d — DXA-4. Отмечены средние значения МПК ± 2SD

Скачать (52KB)

© Петряйкин А.В., Ахмад Е.С., Семенов Д.С., Артюкова З.Р., Кудрявцев Н.Д., Петряйкин Ф.А., Низовцова Л.А., 2022

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».