Effect of Lanthanum Zirconate Ceramic on the Dynamics of Hematological Parameters and the Bone Remodeling Markers: Experimental Study

Cover Page

Cite item

Full Text

Abstract

Background. Zirconium oxide is actively used in medicine; however, research is underway to improve mechanical characteristics and biointegration. One of the promising areas is the study of materials based on lanthanum zirconate (LZ).

The study aimed to examine the effect of a new ceramic material based on LZ on the dynamics of hematological parameters and markers of bone tissue remodeling after intramedullary osteosynthesis (IO) of a hip fracture with LZ rods.

Material and Methods. The ceramic material La1.95Ca0.05Zr2O7 was used. The experiment was conducted in guinea pigs, which were divided into four groups: main group, modeling of a hip fracture (IO of the fracture with LZ rod, n = 9); comparison group, modeling of a hip fracture (IO of a fracture with a rod from b-tricalcium phosphate [TCP]; n = 9); control (C) group, modeling of a hip fracture without IO (n= 9); and native control (NC) group. Animals were withdrawn from the experiment before surgery (NC) and at 4, 10, and 25 weeks after surgery (n=3 for each time point). Hematological parameters, i.e., a tartrate-resistant acid phosphatase (TRAP) as an osteoresorption marker and osteocalcin (OC) as an osteogenesis marker, were determined.

Results. The red blood cell counts in all groups of the operated animals at 4, 10, and 25 weeks after surgery were not significantly different from the NK group. A significantly higher level of leukocytes in comparison with other groups was observed in the control group 10 weeks after surgery (p = 0.044), which was explained by the absence of fracture synthesis. The platelet level in all groups of the operated animals during the study period was not significantly different from the NK group. The TRAP activity in the LZ and TCP groups had maximum values after 4 weeks, and the OC level reached the maximum by 10 weeks after the operation without significant differences between the LZ and TCP groups of animals.

Conclusion. The study of the main hematological parameters did not reveal a negative effect of LZ on the experimental animals. A positive effect of this material on bone tissue remodeling was found. A new ceramic material based on LC appears to be promising for use in traumatology and orthopedics.

About the authors

Irina P. Antropova

Ural State Medical University; Institute of High Temperature Electrochemistry

Email: aip.hemolab@mail.ru
ORCID iD: 0000-0002-9957-2505

Dr. Sci. (Biol.)

Russian Federation, 3, Repina str., Ekaterinburg, 620028; Ekaterinburg

Elena A. Volokitina

Ural State Medical University

Author for correspondence.
Email: volokitina_elena@rambler.ru
ORCID iD: 0000-0001-5994-8558

Dr. Sci. (Med.), Professor

Russian Federation, 3, Repina str., Ekaterinburg, 620028

Maria Yu. Udintseva

Ural State Medical University

Email: izmodenova96@gmail.com
ORCID iD: 0000-0002-5500-4012

аспирант кафедры

Russian Federation, 3, Repina str., Ekaterinburg, 620028

Boris G. Yushkov

Ural State Medical University; Institute of Immunology and Physiology

Email: b.yushkov@iip.uran.ru
ORCID iD: 0000-0001-8780-9889

Dr. Sci. (Med.), Professor

Russian Federation, 3, Repina str., Ekaterinburg, 620028; Ekaterinburg

Natalia V. Tyumentseva

Institute of Immunology and Physiology

Email: tumen80@mail.ru
ORCID iD: 0000-0002-2949-6607

Cand. Sci. (Biol.)

Russian Federation, Ekaterinburg

Sergey M. Kutepov

Ural State Medical University

Email: usma@usma.ru
ORCID iD: 0000-0002-3069-8150

Dr. Sci. (Med.), Professor

Russian Federation, 3, Repina str., Ekaterinburg, 620028

References

  1. Karalashvili L., Kakabadze A., Uhryn M., Vyshnevska H., Ediberidze K., Kakabadze Z. Bone grafts for reconstruction of bone defects (review). Georgian Med News. 2018;(282):44-49.
  2. Шумилова А.А., Шишацкая Е.И. Материалы для восстановления костной ткани. Журнал Сибирского федерального университета. Биология. 2014;7(2): 209-221. Shumilova A.A., Shishatskaya E.I. [Materials for bone regeneration]. Zhurnal Sibirskogo federal’nogo universiteta. Biologiya [Journal of the Siberian Federal University. Biology]. 2014;7(2):209-221. (In Russian).
  3. Tanaka T., Komaki H., Chazono M., Kitasato S., Kakuta A., Akiyama S. et al. Basic research and clinical application of beta-tricalcium phosphate (β-TCP). Morphologie. 2017;101(334):164-172. doi: 10.1016/j.morpho.2017.03.002.
  4. Afzal A. Implantable zirconia bioceramics for bone repair and replacement: A chronological review. Materials Express. 2014;4(1):1-12. doi: 10.1166/mex.2014.1148. Available from: https://www.researchgate.net/publication/268823433_Implantable_zirconia_bioceramics_for_bone_repair_and_replacement_A_chronological_review.
  5. Измоденова М.Ю., Гилев М.В., Ананьев М.В., Зайцев Д.В., Антропова И.П., Фарленков А.С. и др. Характеристика костной ткани при имплантации керамического материала на основе цирконата лантана в эксперименте. Травматология и ортопедия России. 2020;26(3):130-140. doi: 10.21823/2311-2905-2020-26-3-130-140. Izmodenova M.Yu., Gilev M.V., Ananyev M.V., Zaytsev D.V., Antropova I.P., Farlenkov A.S. et al. [Bone Tissue Properties after Lanthanum Zirconate Ceramics Implantation: Experimental Study]. Travmatologiya i ortopediya Rossii [Traumatology and Orthopedics of Russia]. 2020;26(3):130-140. (In Russian). doi: 10.21823/2311-2905-2020-26-3-130-140.
  6. Bhowmick A., Pramanik N., Jana P., Mitra T., Gnanamani A., Das M. et al. Development of bone-like zirconium oxide nanoceramic modified chitosan based porous nanocomposites for biomedical application. Int J Biol Macromol. 2017;95:348-356. doi: 10.1016/j.ijbiomac.2016.11.052.
  7. Chen Y., Roohani-Esfahani S.I., Lu Z., Zreiqat H., Dunstan C.R. Zirconium Ions Up-Regulate the BMP/SMAD Signaling Pathway and Promote the Proliferation and Differentiation of Human Osteoblasts. Plos One. 2015;10(1):e0113426. doi: 10.1371/journal.pone.0113426.
  8. Willbold E., Gu X., Albert D., Kalla K., Bobe K., Brauneis M. et al. Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium. Acta Biomater. 2015;11:554-562. doi: 10.1016/j.actbio.2014.09.041.
  9. Jiang C., Shang J., Li Z., Qin A., Ouyang Z., Qu X. et al. Lanthanum chloride attenuates osteoclast formation and function via the downregulation of rankl-induced Nf-κb and nfatc1 activities. J Cell Physiol. 2016;231(1):142-151. doi: 10.1002/jcp.25065.
  10. Jung G.Y., Park Y.J., Han J.S. Effects of HA released calcium ion on osteoblast differentiation. J Mater Sci Mater Med. 2010;21(5):1649-1654. doi: 10.1007/s10856-010-4011-y.
  11. Saruta J., Ozawa R., Okubo T., Taleghani S.R., Ishijima M., Kitajima H. et al. Biomimetic Zirconia with Cactus-Inspired Meso-Scale Spikes and Nano-Trabeculae for Enhanced Bone Integration. Int J Mol Sci. 2021;22(15):7969. doi: 10.3390/ijms22157969.
  12. Zhu Y., Liu K., Deng J., Ye J., Ai F., Ouyang H. et al. 3D printed zirconia ceramic hip joint with precise structure and broad-spectrum antibacterial properties. Int J Nanomedicine. 2019;14:5977-5987. doi: 10.2147/IJN.S202457.
  13. Gremillard L., Chevalier J., Martin L., Douillard T., Begand S., Hans K. et al. Sub-surface assessment of hydrothermal ageing in zirconia-containing femoralheads for hip joint applications. Acta Biomater. 2018;68:286-295. doi: 10.1016/j.actbio.2017.12.021.
  14. Gilev M.V., Bazarny V.V., Volokitina E.A., Polushina L.G., Maksimova A.Yu., Kazakova Ya.E. [Laboratory monitoring of bone tissue remodeling augmentation of impression intraarticular fracture with different types of bone graft]. Bull Exp Biol Med. 2019; 167(5):681-684. doi: 10.1007/s10517-019-04598-7.
  15. Гурин А.Н., Комлев В.С., Фадеева И.В., Петракова Н.В., Варда Н.С. Сравнительное исследование замещения дефектов костной ткани остеопластическими материалами на основе α- и β-трикальцийфосфата. Стоматология. 2012;91(6):16-21. Gurin A.N., Komlev V.S., Fadeeva I.V., Petrakova N.V., Varda N.S. [A comparative study of bone regeneration potency of alfa and beta-tricalcium phosphate bone substitute materials]. Stomatologiya [Dentistry]. 2012;91(6):16-21 (In Russian).
  16. Gagala J. Minimum 10 years clinical and radiological outcomes of acetabular revisions of total hip arthroplasties with tricalcium phosphate/hydroxyapatite bone graft substitute. BMC Musculoskelet Disord. 2021;22(1):835. doi: 10.1186/s12891-021-04694-8.
  17. Wong C.C., Yeh Y.Y., Chen C.H., Manga Y.B., Jheng P.R., Lu C.X. et al. Effectiveness of treating segmental bone defects with a synergistic co-delivery approach with platelet-rich fibrin and tricalcium phosphate. Mater Sci Eng C Mater Biol Appl. 2021;129:112364. doi: 10.1016/j.msec.2021.112364.
  18. Побел Е.А., Бенгус Л.М., Дедух Н.В. Маркёры костного метаболизма при сращении переломов длинных костей. Остеопороз и остеопатии. 2012;2:25-32.Pobel E.A., Bengus L.M., Dedukh N.V. [Markers of bone metabolism in long bone’s adhesion. Osteoporoz i osteopatii [Osteoporosis and osteopathy]. 2012;2:25-32. (In Russian).
  19. Saveleva M.S., Ivanov A.N., Chibrikova J.A., Abalymov A.A., Surmeneva M.A., Surmenev R.A. et al. Osteogenic capability of vaterite-coated nonwoven polycaprolactone scaffolds for in vivo bone tissue regeneration. Macromol Biosci. 2021;21(12):e2100266. doi: 10.1002/mabi.202100266.
  20. Hansen R.L., Langdahl B.L., Jørgensen P.H., Petersen K.K., Søballe K., Stilling M. Changes in periprosthetic bone mineral density and bone turnover markers after osseointegrated implant surgery: A cohort study of 20 transfemoral amputees with 30-month follow-up. Prosthet Orthot Int. 2019;43(5):508-518. doi: 10.1177/0309364619866599.
  21. Janckila A.J., Takahashi K., Sun S.Z., Yam L.T. Tartrate-resistant acid phosphatase isoform 5b as serum marker for osteoclastic activity. Clin Chem. 2001;47(1):74-80.
  22. Laowalert S., Khotavivattana T., Wattanachanya L., Luangjarmekorn P., Udomkarnjananun S., Katavetin P. et al. Bone turnover markers predict type of bone histomorphometry and bone mineral density in Asian chronic haemodialysis patients. Nephrology (Carlton). 2020;25(2):163-171. doi: 10.1111/nep.13593.
  23. Bailey S., Karsenty G., Gundberg C., Vashishth D. Osteocalcin and osteopontin influence bone morphology and mechanical properties. Ann N Y Acad Sci. 2017;1409(1):79-84. doi: 10.1111/nyas.13470.
  24. Komori T. Functions of osteocalcin in bone, pancreas, testis, and muscle. Int J Mol Sci. 2020;21(20):7513. doi: 10.3390/ijms21207513.
  25. Kumar M., Shelke D., Shah S. Prognostic potential of markers of bone turnover in delayed-healing tibial diaphyseal fractures. Eur J Trauma Emerg Surg. 2019;45(1):31-38. doi: 10.1007/s00068-017-0879-2.
  26. Cox G., Einhorn T.A., Tzioupis C., Giannoudis P.V. Bone-turnover markers in fracture healing. J Bone Joint Surg Br. 2010;92(3):329-334. doi: 10.1302/0301-620X.92B3.22787.
  27. Ingle B.M., Hay S.M., Bottjer H.M., Eastell R. Changes in bone mass and bone turnover following distal forearm fracture. Osteoporosis Int. 1999;10(5):399-407.
  28. Szulc P. Bone turnover: Biology and assessment tools. Best Pract Res Clin Endocrinol Metab. 2018;32(5):725-738. doi: 10.1016/j.beem.2018.05.003.
  29. Гилев М.В., Волокитина Е.А., Антропова И.П., Базарный В.В., Кутепов С.М. Маркеры костного ремоделирования при замещении дефекта трабекулярной костной ткани резорбируемыми и нерезорбируемыми остеопластическими материалами в эксперименте. Гений ортопедии. 2020;26(2):222-227. doi: 10.18019/1028-4427-2020-26-2. Gilev M.V., Volokitina E.A., Antropova I.P., Bazarny V.V., Kutepov S.M. [Bone remodeling markers after experimental augmentation of trabecular bone defects with resorbable and non-resorbable osteoplastic materials in rabbits]. Genij Ortopedii. 2020;26(2):222-227. (In Russian). doi: 10.18019/1028-4427-2020-26-2.
  30. Amiryaghoubi N., Fathi M., Pesyan N.N., Samiei M., Barar J., Omidi Y. Bioactive polymeric scaffolds for osteogenic repair and bone regenerative medicine. Med Res Rev. 2020; 40(5):1833-1870. doi: 10.1002/med.21672.
  31. Diemar S.S., Møllehave L.T., Quardon N., Lylloff L., Thuesen B.H., Linneberg A. et al. Effects of age and sex on osteocalcin and bone-specific alkaline phosphatase-reference intervals and confounders for two bone formation markers. Arch Osteoporos. 2020;15(1):26. doi: 10.1007/s11657-020-00715-6.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Antropova I.P., Volokitina E.A., Udintseva M.Y., Yushkov B.G., Tyumentseva N.V., Kutepov S.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».