Effect of Lanthanum Zirconate Ceramic on the Dynamics of Hematological Parameters and the Bone Remodeling Markers: Experimental Study
- Authors: Antropova I.P.1,2, Volokitina E.A.1, Udintseva M.Y.1, Yushkov B.G.1,3, Tyumentseva N.V.3, Kutepov S.M.1
-
Affiliations:
- Ural State Medical University
- Institute of High Temperature Electrochemistry
- Institute of Immunology and Physiology
- Issue: Vol 28, No 1 (2022)
- Pages: 79-88
- Section: Theoretical and experimental studies
- URL: https://journal-vniispk.ru/2311-2905/article/view/124898
- DOI: https://doi.org/10.17816/2311-2905-1704
- ID: 124898
Cite item
Full Text
Abstract
Background. Zirconium oxide is actively used in medicine; however, research is underway to improve mechanical characteristics and biointegration. One of the promising areas is the study of materials based on lanthanum zirconate (LZ).
The study aimed to examine the effect of a new ceramic material based on LZ on the dynamics of hematological parameters and markers of bone tissue remodeling after intramedullary osteosynthesis (IO) of a hip fracture with LZ rods.
Material and Methods. The ceramic material La1.95Ca0.05Zr2O7 was used. The experiment was conducted in guinea pigs, which were divided into four groups: main group, modeling of a hip fracture (IO of the fracture with LZ rod, n = 9); comparison group, modeling of a hip fracture (IO of a fracture with a rod from b-tricalcium phosphate [TCP]; n = 9); control (C) group, modeling of a hip fracture without IO (n= 9); and native control (NC) group. Animals were withdrawn from the experiment before surgery (NC) and at 4, 10, and 25 weeks after surgery (n=3 for each time point). Hematological parameters, i.e., a tartrate-resistant acid phosphatase (TRAP) as an osteoresorption marker and osteocalcin (OC) as an osteogenesis marker, were determined.
Results. The red blood cell counts in all groups of the operated animals at 4, 10, and 25 weeks after surgery were not significantly different from the NK group. A significantly higher level of leukocytes in comparison with other groups was observed in the control group 10 weeks after surgery (p = 0.044), which was explained by the absence of fracture synthesis. The platelet level in all groups of the operated animals during the study period was not significantly different from the NK group. The TRAP activity in the LZ and TCP groups had maximum values after 4 weeks, and the OC level reached the maximum by 10 weeks after the operation without significant differences between the LZ and TCP groups of animals.
Conclusion. The study of the main hematological parameters did not reveal a negative effect of LZ on the experimental animals. A positive effect of this material on bone tissue remodeling was found. A new ceramic material based on LC appears to be promising for use in traumatology and orthopedics.
Full Text
##article.viewOnOriginalSite##About the authors
Irina P. Antropova
Ural State Medical University; Institute of High Temperature Electrochemistry
Email: aip.hemolab@mail.ru
ORCID iD: 0000-0002-9957-2505
Dr. Sci. (Biol.)
Russian Federation, 3, Repina str., Ekaterinburg, 620028; EkaterinburgElena A. Volokitina
Ural State Medical University
Author for correspondence.
Email: volokitina_elena@rambler.ru
ORCID iD: 0000-0001-5994-8558
Dr. Sci. (Med.), Professor
Russian Federation, 3, Repina str., Ekaterinburg, 620028Maria Yu. Udintseva
Ural State Medical University
Email: izmodenova96@gmail.com
ORCID iD: 0000-0002-5500-4012
аспирант кафедры
Russian Federation, 3, Repina str., Ekaterinburg, 620028Boris G. Yushkov
Ural State Medical University; Institute of Immunology and Physiology
Email: b.yushkov@iip.uran.ru
ORCID iD: 0000-0001-8780-9889
Dr. Sci. (Med.), Professor
Russian Federation, 3, Repina str., Ekaterinburg, 620028; EkaterinburgNatalia V. Tyumentseva
Institute of Immunology and Physiology
Email: tumen80@mail.ru
ORCID iD: 0000-0002-2949-6607
Cand. Sci. (Biol.)
Russian Federation, EkaterinburgSergey M. Kutepov
Ural State Medical University
Email: usma@usma.ru
ORCID iD: 0000-0002-3069-8150
Dr. Sci. (Med.), Professor
Russian Federation, 3, Repina str., Ekaterinburg, 620028References
- Karalashvili L., Kakabadze A., Uhryn M., Vyshnevska H., Ediberidze K., Kakabadze Z. Bone grafts for reconstruction of bone defects (review). Georgian Med News. 2018;(282):44-49.
- Шумилова А.А., Шишацкая Е.И. Материалы для восстановления костной ткани. Журнал Сибирского федерального университета. Биология. 2014;7(2): 209-221. Shumilova A.A., Shishatskaya E.I. [Materials for bone regeneration]. Zhurnal Sibirskogo federal’nogo universiteta. Biologiya [Journal of the Siberian Federal University. Biology]. 2014;7(2):209-221. (In Russian).
- Tanaka T., Komaki H., Chazono M., Kitasato S., Kakuta A., Akiyama S. et al. Basic research and clinical application of beta-tricalcium phosphate (β-TCP). Morphologie. 2017;101(334):164-172. doi: 10.1016/j.morpho.2017.03.002.
- Afzal A. Implantable zirconia bioceramics for bone repair and replacement: A chronological review. Materials Express. 2014;4(1):1-12. doi: 10.1166/mex.2014.1148. Available from: https://www.researchgate.net/publication/268823433_Implantable_zirconia_bioceramics_for_bone_repair_and_replacement_A_chronological_review.
- Измоденова М.Ю., Гилев М.В., Ананьев М.В., Зайцев Д.В., Антропова И.П., Фарленков А.С. и др. Характеристика костной ткани при имплантации керамического материала на основе цирконата лантана в эксперименте. Травматология и ортопедия России. 2020;26(3):130-140. doi: 10.21823/2311-2905-2020-26-3-130-140. Izmodenova M.Yu., Gilev M.V., Ananyev M.V., Zaytsev D.V., Antropova I.P., Farlenkov A.S. et al. [Bone Tissue Properties after Lanthanum Zirconate Ceramics Implantation: Experimental Study]. Travmatologiya i ortopediya Rossii [Traumatology and Orthopedics of Russia]. 2020;26(3):130-140. (In Russian). doi: 10.21823/2311-2905-2020-26-3-130-140.
- Bhowmick A., Pramanik N., Jana P., Mitra T., Gnanamani A., Das M. et al. Development of bone-like zirconium oxide nanoceramic modified chitosan based porous nanocomposites for biomedical application. Int J Biol Macromol. 2017;95:348-356. doi: 10.1016/j.ijbiomac.2016.11.052.
- Chen Y., Roohani-Esfahani S.I., Lu Z., Zreiqat H., Dunstan C.R. Zirconium Ions Up-Regulate the BMP/SMAD Signaling Pathway and Promote the Proliferation and Differentiation of Human Osteoblasts. Plos One. 2015;10(1):e0113426. doi: 10.1371/journal.pone.0113426.
- Willbold E., Gu X., Albert D., Kalla K., Bobe K., Brauneis M. et al. Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium. Acta Biomater. 2015;11:554-562. doi: 10.1016/j.actbio.2014.09.041.
- Jiang C., Shang J., Li Z., Qin A., Ouyang Z., Qu X. et al. Lanthanum chloride attenuates osteoclast formation and function via the downregulation of rankl-induced Nf-κb and nfatc1 activities. J Cell Physiol. 2016;231(1):142-151. doi: 10.1002/jcp.25065.
- Jung G.Y., Park Y.J., Han J.S. Effects of HA released calcium ion on osteoblast differentiation. J Mater Sci Mater Med. 2010;21(5):1649-1654. doi: 10.1007/s10856-010-4011-y.
- Saruta J., Ozawa R., Okubo T., Taleghani S.R., Ishijima M., Kitajima H. et al. Biomimetic Zirconia with Cactus-Inspired Meso-Scale Spikes and Nano-Trabeculae for Enhanced Bone Integration. Int J Mol Sci. 2021;22(15):7969. doi: 10.3390/ijms22157969.
- Zhu Y., Liu K., Deng J., Ye J., Ai F., Ouyang H. et al. 3D printed zirconia ceramic hip joint with precise structure and broad-spectrum antibacterial properties. Int J Nanomedicine. 2019;14:5977-5987. doi: 10.2147/IJN.S202457.
- Gremillard L., Chevalier J., Martin L., Douillard T., Begand S., Hans K. et al. Sub-surface assessment of hydrothermal ageing in zirconia-containing femoralheads for hip joint applications. Acta Biomater. 2018;68:286-295. doi: 10.1016/j.actbio.2017.12.021.
- Gilev M.V., Bazarny V.V., Volokitina E.A., Polushina L.G., Maksimova A.Yu., Kazakova Ya.E. [Laboratory monitoring of bone tissue remodeling augmentation of impression intraarticular fracture with different types of bone graft]. Bull Exp Biol Med. 2019; 167(5):681-684. doi: 10.1007/s10517-019-04598-7.
- Гурин А.Н., Комлев В.С., Фадеева И.В., Петракова Н.В., Варда Н.С. Сравнительное исследование замещения дефектов костной ткани остеопластическими материалами на основе α- и β-трикальцийфосфата. Стоматология. 2012;91(6):16-21. Gurin A.N., Komlev V.S., Fadeeva I.V., Petrakova N.V., Varda N.S. [A comparative study of bone regeneration potency of alfa and beta-tricalcium phosphate bone substitute materials]. Stomatologiya [Dentistry]. 2012;91(6):16-21 (In Russian).
- Gagala J. Minimum 10 years clinical and radiological outcomes of acetabular revisions of total hip arthroplasties with tricalcium phosphate/hydroxyapatite bone graft substitute. BMC Musculoskelet Disord. 2021;22(1):835. doi: 10.1186/s12891-021-04694-8.
- Wong C.C., Yeh Y.Y., Chen C.H., Manga Y.B., Jheng P.R., Lu C.X. et al. Effectiveness of treating segmental bone defects with a synergistic co-delivery approach with platelet-rich fibrin and tricalcium phosphate. Mater Sci Eng C Mater Biol Appl. 2021;129:112364. doi: 10.1016/j.msec.2021.112364.
- Побел Е.А., Бенгус Л.М., Дедух Н.В. Маркёры костного метаболизма при сращении переломов длинных костей. Остеопороз и остеопатии. 2012;2:25-32.Pobel E.A., Bengus L.M., Dedukh N.V. [Markers of bone metabolism in long bone’s adhesion. Osteoporoz i osteopatii [Osteoporosis and osteopathy]. 2012;2:25-32. (In Russian).
- Saveleva M.S., Ivanov A.N., Chibrikova J.A., Abalymov A.A., Surmeneva M.A., Surmenev R.A. et al. Osteogenic capability of vaterite-coated nonwoven polycaprolactone scaffolds for in vivo bone tissue regeneration. Macromol Biosci. 2021;21(12):e2100266. doi: 10.1002/mabi.202100266.
- Hansen R.L., Langdahl B.L., Jørgensen P.H., Petersen K.K., Søballe K., Stilling M. Changes in periprosthetic bone mineral density and bone turnover markers after osseointegrated implant surgery: A cohort study of 20 transfemoral amputees with 30-month follow-up. Prosthet Orthot Int. 2019;43(5):508-518. doi: 10.1177/0309364619866599.
- Janckila A.J., Takahashi K., Sun S.Z., Yam L.T. Tartrate-resistant acid phosphatase isoform 5b as serum marker for osteoclastic activity. Clin Chem. 2001;47(1):74-80.
- Laowalert S., Khotavivattana T., Wattanachanya L., Luangjarmekorn P., Udomkarnjananun S., Katavetin P. et al. Bone turnover markers predict type of bone histomorphometry and bone mineral density in Asian chronic haemodialysis patients. Nephrology (Carlton). 2020;25(2):163-171. doi: 10.1111/nep.13593.
- Bailey S., Karsenty G., Gundberg C., Vashishth D. Osteocalcin and osteopontin influence bone morphology and mechanical properties. Ann N Y Acad Sci. 2017;1409(1):79-84. doi: 10.1111/nyas.13470.
- Komori T. Functions of osteocalcin in bone, pancreas, testis, and muscle. Int J Mol Sci. 2020;21(20):7513. doi: 10.3390/ijms21207513.
- Kumar M., Shelke D., Shah S. Prognostic potential of markers of bone turnover in delayed-healing tibial diaphyseal fractures. Eur J Trauma Emerg Surg. 2019;45(1):31-38. doi: 10.1007/s00068-017-0879-2.
- Cox G., Einhorn T.A., Tzioupis C., Giannoudis P.V. Bone-turnover markers in fracture healing. J Bone Joint Surg Br. 2010;92(3):329-334. doi: 10.1302/0301-620X.92B3.22787.
- Ingle B.M., Hay S.M., Bottjer H.M., Eastell R. Changes in bone mass and bone turnover following distal forearm fracture. Osteoporosis Int. 1999;10(5):399-407.
- Szulc P. Bone turnover: Biology and assessment tools. Best Pract Res Clin Endocrinol Metab. 2018;32(5):725-738. doi: 10.1016/j.beem.2018.05.003.
- Гилев М.В., Волокитина Е.А., Антропова И.П., Базарный В.В., Кутепов С.М. Маркеры костного ремоделирования при замещении дефекта трабекулярной костной ткани резорбируемыми и нерезорбируемыми остеопластическими материалами в эксперименте. Гений ортопедии. 2020;26(2):222-227. doi: 10.18019/1028-4427-2020-26-2. Gilev M.V., Volokitina E.A., Antropova I.P., Bazarny V.V., Kutepov S.M. [Bone remodeling markers after experimental augmentation of trabecular bone defects with resorbable and non-resorbable osteoplastic materials in rabbits]. Genij Ortopedii. 2020;26(2):222-227. (In Russian). doi: 10.18019/1028-4427-2020-26-2.
- Amiryaghoubi N., Fathi M., Pesyan N.N., Samiei M., Barar J., Omidi Y. Bioactive polymeric scaffolds for osteogenic repair and bone regenerative medicine. Med Res Rev. 2020; 40(5):1833-1870. doi: 10.1002/med.21672.
- Diemar S.S., Møllehave L.T., Quardon N., Lylloff L., Thuesen B.H., Linneberg A. et al. Effects of age and sex on osteocalcin and bone-specific alkaline phosphatase-reference intervals and confounders for two bone formation markers. Arch Osteoporos. 2020;15(1):26. doi: 10.1007/s11657-020-00715-6.
Supplementary files
