Treatment of Pelvic Ring Injury with 3D Printed Patient-Specific Implant: Case Report

Cover Page

Cite item

Full Text

Abstract

Rationale. The development of 3D printing technology allows the manufacture of individual implants to treat the patients with diseases and consequences of musculoskeletal system injuries. However, the use of additive technologies in the patients with multiple trauma in the acute period is limited. The purpose of study was to demonstrate the possibility of using individual implants for the definitive fixation of the anterior pelvic ring in a patient with multiple trauma.

Patient concerns. A 22-year-old patient was admitted after an injury as a result of a fall from the 5th floor. The treatment was carried out in accordance with the ATLS protocol. Diagnosis: multiple trauma; closed chest, pelvis and limbs injuries; fracture of the left 2nd to 5th ribs; pelvic bones fracture AO/ OTA: 61-C1.3a; fracture of both bones of the left lower leg AO/OTA: 42-B3b; 2nd degree shock.

Interventions. An emergency external fixation of the pelvis and lower leg bones was performed. An individual implant for pubic bone fixation was made using 3D printing. On the 8th day, the definitive fixation of the pelvic and left lower leg bones was performed. The patient is activated on the 1st day after the surgery.

Outcomes. The early postoperative period was uneventful. The functional result on the Majeed scale in 6 months by remote filling out the questionnaire was 84 points. Lessons. The custom-made implants make it possible the successful fixation of the anterior pelvic ring. The use of 3D printing technologies for the osteosynthesis of pelvic fractures is promising, although requires further study.

About the authors

E. I. Solod

RUDN University;
Priorov National Medical Research Center of Traumatology and Orthopaedics

Email: fake@neicon.ru

Eduard I. Solod — Dr. Sci. (Med.), Professor, Chair of Traumatology and Orthopaedics; Trauma and orthopaedic surgeon, Department

Moscow

Russian Federation

A. F. Lazarev

Priorov National Medical Research Center of Traumatology and Orthopaedics

Email: fake@neicon.ru

Anatoliy F. Lazarev — Dr. Sci. (Med.), Professor, Head of the Department

Moscow

Russian Federation

R. A. Petrovskiy

RUDN University

Author for correspondence.
Email: petrovskytravma@gmail.com

Roman A. Petrovskiy — PhD Student, Chair of Traumatology and Orthopaedics

Moscow

Russian Federation

M. A. Abdulkhabirov

RUDN University

Email: fake@neicon.ru

Magomed A. Abdulkhabirov — Cand. Sci. (Med.), Assistant Professor, Chair of Traumatology and Orthopaedics

Moscow

Russian Federation

Y. M. Alsmadi

RUDN University

Email: fake@neicon.ru

Yasin M. Alsmadi — PhD Student, Chair of Traumatology and Orthopaedics

Moscow

Russian Federation

References

  1. Snyder T. J., Andrews, M., Weislogel M., Moeck P., Stone-Sundberg J., Birkes D. et al. 3D Systems’ Technology Overview and New Applications in Manufacturing, Engineering, Science, and Education. 3D Print Addit Manuf. 2014;1(3):169-176. doi: 10.1089/3dp.2014.1502
  2. Wong T.M., Jin J., Lau T.W., Fang C., Yan C.H., Yeung K. et al. The use of three-dimensional printing technology in orthopaedic surgery. J Orthop Surg (Hong Kong). 2017 Jan;25(1):2309499016684077. doi: 10.1177/2309499016684077.
  3. Woo S.H., Sung M.J., Park K.S., Yoon T.R. Threedimensional-printing Technology in Hip and Pelvic Surgery: Current Landscape. Hip Pelvis. 2020;32(1):1-10. doi: 10.5371/hp.2020.32.1.1.
  4. Bruns N., Krettek C. [3D-printing in trauma surgery : Planning, printing and processing]. Unfallchirurg. 2019;122(4):270-277. (In German). doi: 10.1007/s00113-019-0625-9.
  5. Trauner K.B. The Emerging Role of 3D Printing in Arthroplasty and Orthopedics. J Arthroplasty. 2018;33(8):2352-2354. doi: 10.1016/j.arth.2018.02.033.
  6. Abdelaal O., Darwish S., El-Hofy H., Saito Y. Patientspecific design process and evaluation of a hip prosthesis femoral stem. Int J Artif Organs. 2019; 42(6):271-290. doi: 10.1177/0391398818815479.
  7. Тихилов Р.М., Конев В.А., Шубняков И.И., Денисов А.О., Михайлова П.М., Билык С.С. и др. Аддитивная технология в полном восстановлении функции сустава при эндопротезировании (экспериментальное исследование). Хирургия. Журнал им. Н.И. Пирогова. 2019;(5):52-56. doi: 10.17116/hirurgia201905152.
  8. Belvedere C., Siegler S., Fortunato A., Caravaggi P., Liverani E., Durante S. et al. New comprehensive procedure for custom made total ankle replacements: medical imaging, joint modeling, prosthesis design, and 3D printing. J Orthop Res. 2019;37(3):760-768. doi: 10.1002/jor.24198.
  9. Sporer S., MacLean L., Burger A., Moric M. Evaluation of a 3D-printed total knee arthroplasty using radiostereometric analysis: assessment of highly porous biological fixation of the tibial baseplate and metal-backed patellar component. Bone Joint J. 2019;101-B(7 Supple C):40-47. doi: 10.1302/0301-620X.101B7.BJJ-2018-1466.R1.
  10. Коваленко А.Н., Шубняков И.И., Билык С.С., Тихилов Р.М. Современные технологии лечения тяжелых костных дефектов в области вертлужной впадины: какие проблемы решают индивидуальные имплантаты? Политравма. 2017;(1):72-81.
  11. Коваленко А.Н., Джавадов А.А., Шубняков И.И., Билык С.С., Денисов А.О., Черкасов М.А. и др. Среднесрочные результаты использования индивидуальных конструкций при ревизионном эндопротезировании тазобедренного сустава. Травматология и ортопедия России. 2019;25(3):37-46. doi: 10.21823/2311-2905-2019-25-3-37-46.
  12. Кулешов А.А., Ветрилэ М.С., Шкарубо А.Н., Доценко В.В., Еськин Н.А., Лисянский И.Н., Макаров С.Н. Аддитивные технологии в хирургии деформаций позвоночника. Вестник травматологии и ортопедии им Н.Н. Приорова. 2018;(3-4):19-29. doi: 10.17116/vto201803-04119.
  13. Galvagno S.M., Nahmias J.T., Young D.A. Advanced Trauma Life Support® Update 2019. Anesthesiol Clin. 2019;37(1):13-32. doi: 10.1016/j.anclin.2018.09.009.
  14. Kirkpatrick A.W., Sirois M., Laupland K.B., Liu D., Rowan K., Ball C. G. et al. Hand-Held Thoracic Sonography for Detecting Post-Traumatic Pneumothoraces: The Extended Focused Assessment With Sonography For Trauma (EFAST). J Trauma. 2004;57(2):288-295. doi: 10.1097/01.ta.0000133565.88871.e4.
  15. Meinberg E.G., Agel J., Roberts C., Karam M.D., Kellam J.F. Fracture and Dislocation Classification Compendium-2018. J Orthop Trauma. 2018;32:71-76. doi: 10.1097/BOT.0000000000001063.
  16. Baker S.P., O’Neill B., Haddon W. Jr., Long W.B. The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. J Trauma. 1974;14(3):187-196.
  17. Pape H.C., Krettek C. [Management of fractures in the severely injured influence of the principle of «damage control orthopaedic surgery»]. Unfallchirurg. 2003;106(2):87-96. (In German). doi: 10.1007/s00113-003-0580-2.
  18. Denis F., Davis S., Comfort T. Sacral fractures: an important problem. Retrospective analysis of 236 cases. Clin Orthop Relat Res. 1988;227:67-81.
  19. Starr A. J., Nakatani T., Reinert C.M., Cederberg K. Superior Pubic Ramus Fractures Fixed With Percutaneous Screws: What Predicts Fixation Failure? J Orthop Trauma. 2008;22(2):81-87. doi: 10.1097/bot.0b013e318162ab6e .
  20. Донченко С.В., Дубров В.Э., Голубятников А.В., Черняев А.В., Кузькин И.А., Алексеев Д.В. и др. Способы окончательной фиксации тазового кольца, основанные на расчетах конечно-элементной модели. Вестник травматологии и ортопедии им. Н.Н. Приорова. 2014;(1):38-44. doi: 10.32414/0869-8678-2014-1-38-44.
  21. Bodzay T., Sztrinkai G., Pajor S., Gál T., Jónás Z., Erdös P., Váradi K. Does surgically fixation of pubic fracture increase the stability of the operated posterior pelvis? Eklem Hastalik Cerrahisi. 2014;25(2):91-95. doi: 10.5606/ehc.2014.20.
  22. Majeed S.A. Grading the outcome of pelvic fractures. J Bone Joint Surg Br. 1989;71(2):304-306.
  23. Zou Y., Han Q., Weng X., Zou Y., Yang Y., Zhang K. et al. The precision and reliability evaluation of 3-dimensional printed damaged bone and prosthesis models by stereo lithography appearance. Medicine (Baltimore). 2018;97(6):e9797. doi: 10.1097/MD.0000000000009797.
  24. Hoang D., Perrault D., Stevanovic M., Ghiassi A. Surgical applications of three-dimensional printing: a review of the current literature & how to get started. Ann Transl Med. 2016;4(23):456. doi: 10.21037/atm.2016.12.18.
  25. Cai L., Zhang Y., Chen C., Lou Y., Guo X., Wang J. 3D printing-based minimally invasive cannulated screw treatment of unstable pelvic fracture. J Orthop Surg Res. 2018;13(1):71. doi: 10.1186/s13018-018-0778-1.
  26. Zeng C., Xiao J., Wu Z., Huang W. Evaluation of threedimensional printing for internal fixation of unstable pelvic fracture from minimal invasive para-rectus abdominis approach: a preliminary report. Int J Clin Exp Med. 2015;8(8):13039-13044.
  27. Wu X.B., Wang J.Q., Zhao C.P., Sun X., Shi Y., Zhang Z.A. et al. Printed three-dimensional anatomic templates for virtual preoperative planning before reconstruction of old pelvic injuries: initial results. Chin Med J (Engl). 2015;128(4):477-482. doi: 10.4103/0366-6999.151088.
  28. Chen K., Yao S., Yang F., Drepaul D., Telemacque D., Zhu F. et al. Minimally Invasive Screw Fixation of Unstable Pelvic Fractures Using the «Blunt End» Kirschner Wire Technique Assisted by 3D Printed External Template. Biomed Res Int. 2019;2019:1524908. doi: 10.1155/2019/1524908.
  29. Fang C., Cai H., Kuong E., Chui E., Siu Y.C., Ji T., Drstvenšek I. Surgical applications of three-dimensional printing in the pelvis and acetabulum: from models and tools to implants. Unfallchirurg. 2019;122(4):278-285. doi: 10.1007/s00113-019-0626-8.
  30. Wong K.C. 3D-printed patient-specific applications in orthopedics. Orthop Res Rev. 2016;8:57-66. doi: 10.2147/ORR.S99614.
  31. Krettek C., Bruns N. [Current concepts and new developments of 3D printing in trauma surgery]. Unfallchirurg. 2019;122(4):256-269. (In German). doi: 10.1007/s00113-019-0636-6.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Traumatology and Orthopedics of Russia

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».