ФЕРМЕНТАТИВНАЯ АКТИВНОСТЬ PDGF ПРИ ЗАМЕДЛЕННОЙ КОНСОЛИДАЦИИ ПЕРЕЛОМОВ

Обложка

Цитировать

Полный текст

Аннотация

Введение. В травматологии и ортопедии большую популярность приобрели методики, в которых используются факторы роста для улучшения консолидации переломов, а также для лечения воспалительных и дегенеративных заболеваний опорно-двигательного аппарата. Многими исследователями ведется активный поиск вариантов персонифицирования данной терапии и причин замедленной консолидации.

Цель работы — выявление биохимического критерия замедленной консолидации.

Материал и методы. Объектом наблюдения были пациенты с высокоэнергетическими открытыми переломами костей голени с нормальной (1 группа) и с замедленной (2 группа) консолидацией костных отломков. Изучали ферментативную активность тромбоцитарного фактора роста (PDGF) в сыворотке крови через 7 дней, а также через 1, 3 и 6 мес. после репозиции костных отломков. Использовали спектрофотометрическую методику (Specord-200).

Результаты. У пациентов с нормальной консолидацией костных отломков ферментативная активность PDGF была статистически значимо выше по сравнению с группой, в которой консолидация была замедлена. При этом максимально высокая активность отмечалась на 7-й день, а к 3-му месяцу она становилась ниже.

Заключение. Костная регенерация зависит от ферментативной активности PDGF. Выявлены значимые отличия на различных сроках консолидации. Изучение причин ферментативной недостаточности PDGF и их коррекция имеют большое значение для сокращения сроков консолидации.

Об авторах

Д. В. Кузьменко

Донецкий национальный медицинский университет им. М. Горького

Автор, ответственный за переписку.
Email: fake@neicon.ru

Кузьменко Дмитрий Владимирович — аспирант кафедры травматологии, ортопедии и хирургии экстремальных состояний.

Пр. Ильича, д. 16, Донецк

Россия

Г. В. Лобанов

Донецкий национальный медицинский университет им. М. Горького

Email: fake@neicon.ru

Лобанов Григорий Викторович — доктор медицинских наук, профессор, заведующий кафедрой травматологии, ортопедии и хирургии экстремальных состояний.

Пр. Ильича, д. 16, Донецк

Россия

О. П. Шатова

Донецкий национальный медицинский университет им. М. Горького

Email: shatova.op@gmail.com

Шатова Ольга Петровна — кандидат медицинских наук, доцент, заведующая кафедрой биологической.

Пр. Ильича, д. 16, Донецк

Россия

Список литературы

  1. Лаврищева Г.И., Оноприенко Г.А. Морфологические и клинические аспекты репаративной регенерации опорных органов и тканей. М. : Медицина, 1996. 208 с. Lavrishcheva G.I., Onoprienko G.A. Morfologicheskie i klinicheskie aspekty reparativnoi regeneratsii opornykh organov i tkanei [Morphological and clinical aspects of reparative regeneration of supporting organs and tissues]. Moscow : Medicine, 1996. 208 р.
  2. Majidinia M., Sadeghpour A., Yousefi B. The roles of signaling pathways in bone repair and regeneration. J Cell Physiol. 2017. doi: 10.1002/jcp.26042. [Epub ahead of print].
  3. Fischer C., Doll J., Tanner M., Bruckner T., Zimmermann G., Helbig L., Biglari B., Schmidmaier G., Moghaddam A. Quantification of TGF-ss1, PDGF and IGF-1 cytokine expression after fracture treatment vs. non-union therapy via masquelet. Injury. 2016; 47 (2):342-349. doi: 10.1016/j.injury.2015.11.007.
  4. Bayer E.A., Jordan J., Roy A., Gottardi R., Fedorchak M.V., Kumta P.N., Little S.R. programmed platelet-derived growth factor-BB and bone morphogenetic protein-2 delivery from a hybrid calcium phosphate alginate scaffold. Tissue Eng Part A. 2017. [Epub ahead of print]. doi: 10.1089/ten.TEA.2017.0027.
  5. Kim J.H., Oh S.H., Min H.K., Lee J.H. Dual growth factor-immobilized asymmetrically porous membrane for bone-to-tendon interface regeneration on rat patellar tendon avulsion model. J Biomed Mater Res A. 2018.106(1):115-125. doi: 10.1002/jbm.a.36212.
  6. Kirby G.T., White L.J., Steck R., Berner A., Bogoevski K., Qutachi O., Jones B., Saifzadeh S., Hutmacher D.W., Shakesheff K.M., Woodruff M.A. Microparticles for sustained growth factor delivery in the regeneration of critically-sized segmental tibial bone defects. Materials (Basel). 2016;9(4):E259. doi: 10.3390/ma9040259.
  7. Elamin Y.Y., Rafee S., Osman N., KJ O.B., Gately K. Thymidine Phosphorylase in Cancer; Enemy or Friend? Cancer Microenviron. 2016; 9(1):33-43. doi: 10.1007/s12307-015-0173-y
  8. Tabata S., Yamamoto M., Goto H., Hirayama A., Ohishi M., Kuramoto T., Mitsuhashi A., Ikeda R., Haraguchi M., Kawahara K., Shinsato Y., Minami K., Saijo A., Hanibuchi M., Nishioka Y., Sone S., Esumi H., Tomita M., Soga T., Furukawa T., Akiyama SI. Thymidine catabolism as a metabolic strategy for cancer survival. Cell Rep. 2017; 19 (7):1313-1321. doi: 10.1016/j.celrep.2017.04.061.
  9. Li Q., Niu Y., Diao H., Wang L., Chen X., Wang Y., Dong L., Wang C. In situ sequestration of endogenous PDGF-BB with an ECM-mimetic sponge for accelerated wound healing. Biomaterials. 2017;148:54-68. doi: 10.1016/j.biomaterials.2017.09.028.
  10. Miszczak-Zaborska E., Wójcik-Krowiranda K., Kubiak R., Bieńkiewicz A., Bartkowiak J. The activity of thymidine phosphorylase as a new ovarian tumor marker. Gynecol Oncol. 2004 Jul;94(1):86-92. doi: 10.1016/j.ygyno.2004.04.011
  11. Borzenko B.G., Bakurova E.M., Popovich Yu.A., Sidyuk E.A., Popovich A.Y. Activity of thymidilate «salvage pathway» enzymes in human gastric cancer and blood serum correlationwith treatment modalities. Experimental Oncology. 2013;35(1): 37-40.
  12. Janion C., Shugar D. Thymidine phosphorylase and other enzymes in regenerating rat liver. Acta Biochim Pol. 1961; 8:337-344.
  13. Li J., Jahr H., Zheng W., Ren P.G. Visualizing angiogenesis by multiphoton microscopy in vivo in genetically modified 3D-PLGA/nHAp scaffold for calvarial critical bone defect repair. J Vis Exp. 2017;(127). doi: 10.3791/55381.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Травматология и ортопедия России, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».