PDGF ENZYMATIC ACTIVITY IN PATIENTS WITH DELAYED FRACTURE CONSOLIDATION

Cover Page

Cite item

Full Text

Abstract

Introduction. Techniques that use growth factors to improve bone fragment consolidation and to treat the inflammatory and degenerative diseases of the musculoskeletal system have become very popular. Many researchers are actively searching for personification of this therapy and the reasons for delayed consolidation. The purpose of the study – to identify the biomarker for delayed bone consolidation.

Materials and Methods. The study groups consisted of patients with high-energy tibia open fractures with normal (group 1) and with delayed (2nd group) consolidation of bone fragments. The enzymatic activity of platelet-derived growth factor (PDGF) in blood serum was studied after 7 days and in 1, 3 and 6 months after bone fragments reduction. Spectrophotometric technique (Specord-200) was used.

Results. In patients with normal consolidation of bone fragments, the enzymatic activity of PDGF was statistically significantly higher in comparison with the group with delayed healing. At the same time, the highest activity was reported on day 7, and by third month it was becoming lower.

Conclusion. Bone healing depends on PDGF enzymatic activity, besides significant differences on various stages of healing were observed. Further study the reasons for the PDGF enzymatic deficiency and its correction are of a great interest for reducing the timing of consolidation.

About the authors

D. V. Kuzmenko

Maxim Gorky Donetsk State Medical University

Author for correspondence.
Email: fake@neicon.ru

Dmitry V. Kuzmenko — Graduate Student, Тraumatology and Оrthopedics Department.

16, pr. Il’icha, Donetsk Russian Federation

G. V. Lobanov

Maxim Gorky Donetsk State Medical University

Email: fake@neicon.ru

Gregory V. Lobanov — Dr. Sci. (Med.), Professor, Head of Тraumatology and Оrthopedics Department.

16, pr. Il’icha, Donetsk Russian Federation

O. P. Shatova

Maxim Gorky Donetsk State Medical University

Email: shatova.op@gmail.com

Olga P. Shatova — Cand. Sci. (Med.), Head of Biological Chemistry Department.

16, pr. Il’icha, Donetsk Russian Federation

References

  1. Лаврищева Г.И., Оноприенко Г.А. Морфологические и клинические аспекты репаративной регенерации опорных органов и тканей. М. : Медицина, 1996. 208 с. Lavrishcheva G.I., Onoprienko G.A. Morfologicheskie i klinicheskie aspekty reparativnoi regeneratsii opornykh organov i tkanei [Morphological and clinical aspects of reparative regeneration of supporting organs and tissues]. Moscow : Medicine, 1996. 208 р.
  2. Majidinia M., Sadeghpour A., Yousefi B. The roles of signaling pathways in bone repair and regeneration. J Cell Physiol. 2017. doi: 10.1002/jcp.26042. [Epub ahead of print].
  3. Fischer C., Doll J., Tanner M., Bruckner T., Zimmermann G., Helbig L., Biglari B., Schmidmaier G., Moghaddam A. Quantification of TGF-ss1, PDGF and IGF-1 cytokine expression after fracture treatment vs. non-union therapy via masquelet. Injury. 2016; 47 (2):342-349. doi: 10.1016/j.injury.2015.11.007.
  4. Bayer E.A., Jordan J., Roy A., Gottardi R., Fedorchak M.V., Kumta P.N., Little S.R. programmed platelet-derived growth factor-BB and bone morphogenetic protein-2 delivery from a hybrid calcium phosphate alginate scaffold. Tissue Eng Part A. 2017. [Epub ahead of print]. doi: 10.1089/ten.TEA.2017.0027.
  5. Kim J.H., Oh S.H., Min H.K., Lee J.H. Dual growth factor-immobilized asymmetrically porous membrane for bone-to-tendon interface regeneration on rat patellar tendon avulsion model. J Biomed Mater Res A. 2018.106(1):115-125. doi: 10.1002/jbm.a.36212.
  6. Kirby G.T., White L.J., Steck R., Berner A., Bogoevski K., Qutachi O., Jones B., Saifzadeh S., Hutmacher D.W., Shakesheff K.M., Woodruff M.A. Microparticles for sustained growth factor delivery in the regeneration of critically-sized segmental tibial bone defects. Materials (Basel). 2016;9(4):E259. doi: 10.3390/ma9040259.
  7. Elamin Y.Y., Rafee S., Osman N., KJ O.B., Gately K. Thymidine Phosphorylase in Cancer; Enemy or Friend? Cancer Microenviron. 2016; 9(1):33-43. doi: 10.1007/s12307-015-0173-y
  8. Tabata S., Yamamoto M., Goto H., Hirayama A., Ohishi M., Kuramoto T., Mitsuhashi A., Ikeda R., Haraguchi M., Kawahara K., Shinsato Y., Minami K., Saijo A., Hanibuchi M., Nishioka Y., Sone S., Esumi H., Tomita M., Soga T., Furukawa T., Akiyama SI. Thymidine catabolism as a metabolic strategy for cancer survival. Cell Rep. 2017; 19 (7):1313-1321. doi: 10.1016/j.celrep.2017.04.061.
  9. Li Q., Niu Y., Diao H., Wang L., Chen X., Wang Y., Dong L., Wang C. In situ sequestration of endogenous PDGF-BB with an ECM-mimetic sponge for accelerated wound healing. Biomaterials. 2017;148:54-68. doi: 10.1016/j.biomaterials.2017.09.028.
  10. Miszczak-Zaborska E., Wójcik-Krowiranda K., Kubiak R., Bieńkiewicz A., Bartkowiak J. The activity of thymidine phosphorylase as a new ovarian tumor marker. Gynecol Oncol. 2004 Jul;94(1):86-92. doi: 10.1016/j.ygyno.2004.04.011
  11. Borzenko B.G., Bakurova E.M., Popovich Yu.A., Sidyuk E.A., Popovich A.Y. Activity of thymidilate «salvage pathway» enzymes in human gastric cancer and blood serum correlationwith treatment modalities. Experimental Oncology. 2013;35(1): 37-40.
  12. Janion C., Shugar D. Thymidine phosphorylase and other enzymes in regenerating rat liver. Acta Biochim Pol. 1961; 8:337-344.
  13. Li J., Jahr H., Zheng W., Ren P.G. Visualizing angiogenesis by multiphoton microscopy in vivo in genetically modified 3D-PLGA/nHAp scaffold for calvarial critical bone defect repair. J Vis Exp. 2017;(127). doi: 10.3791/55381.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Traumatology and Orthopedics of Russia

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».