Structural Reorganization of the Third Metatarsal Bone Shaft After Autogenous Plasty of the Tibial Portion of the Sciatic Nerve
- Authors: Shchudlo N.A.1, Stupina T.A.1, Varsegova T.N.1
-
Affiliations:
- National Ilizarov Medical Research Centre for Traumatology and Orthopedics
- Issue: Vol 29, No 3 (2023)
- Pages: 56-64
- Section: Theoretical and experimental studies
- URL: https://journal-vniispk.ru/2311-2905/article/view/255264
- DOI: https://doi.org/10.17816/2311-2905-2534
- ID: 255264
Cite item
Abstract
Background. Previous research has shown that neurectomy of the sciatic nerve leads to a reduction in bone density in the femur and tibia of laboratory mice and rats. However, the impact of surgeries aimed at restoring nerve innervation on the bones of distal limb parts has not been studied.
Aim of the study — to identify structural changes in the shaft of the third metatarsal bone after primary autogenous plasty of the resection defect of the tibial portion of the sciatic nerve in rats.
Methods. Autologous neuroplasty of the tibial portion of the sciatic nerve was performed on 16 Wistar rats (aged 8-10 months). The animals were euthanized at 4 and 6 months after the surgery, and a control group of 7 intact rats of similar age was included. Histomorphometric analysis was conducted on a dissected fragment of the forefoot at the level of the metatarsal bones. The ratio of fuchsinophilic and anilinophilic structures of the cortical plate was determined using point-count volumetry on Masson-stained images of transverse sections of the third metatarsal bone shaft. The thickness of the cortical plate, numerical density, area, and diameter of osteons and Haversian canals were measured.
Results. After 4 months, compared to the control group, a 15% decrease (p = 0.0001) in the proportion of mineralized structures of the cortical plate and a 12.7% reduction (p = 0.0184) in its thickness were observed. Osteolysis signs were present in the osteonal layer, along with decreased numerical density and dimensional characteristics of osteons, and the presence of osteons with dilated Haversian canals. At 6 months, the thickness of the cortical plate did not significantly differ from the norm (p = 0.2067), but there was a progressive 33.6% decrease (p = 0.0001) in the proportion of mineralized structures. Reduced values of numerical density, area, and diameter of osteons persisted in the osteonal layer, while the diameters of Haversian canals in osteons increased over time.
Conclusion. From 4 to 6 months, the thickness of the cortical layer in the compact bone of the third metatarsal bone shaft was restored. However, changes in the numerical and dimensional composition of osteons, along with decreased mineralization of the extracellular matrix and erosion of the subperiosteal bone layer, continued to progress. The developed experimental 2D model can be used to assess denervation osteopenia in distal limb parts and further explore rehabilitation interventions that enhance and improve reinnervation.
Full Text
##article.viewOnOriginalSite##About the authors
Nathalia A. Shchudlo
National Ilizarov Medical Research Centre for Traumatology and Orthopedics
Email: nshchudlo@mail.ru
ORCID iD: 0000-0001-9914-8563
Dr. Sci. (Med.)
Russian Federation, 6, M. Ulyanova st., Kurgan, 640014Tatyana A. Stupina
National Ilizarov Medical Research Centre for Traumatology and Orthopedics
Author for correspondence.
Email: StupinaSTA@mail.ru
ORCID iD: 0000-0003-3434-0372
Dr. Sci. (Biol.)
Russian Federation, 6, M. Ulyanova st., Kurgan, 640014Tatyana N. Varsegova
National Ilizarov Medical Research Centre for Traumatology and Orthopedics
Email: varstn@mail.ru
ORCID iD: 0000-0001-5430-2045
Cand. Sci. (Biol.)
Russian Federation, 6, M. Ulyanova st., Kurgan, 640014References
- Gillespie J.A. The nature of the bone changes associated with nerve injuries and disuse. Bone Joint Surg. 1954;36-B(3):464-473. doi: 10.1302/0301-620X.36B3.464.
- Hurrell D.J. The Nerve Supply of Bone. J Anat. 1937; 72(Pt 1):54-61.
- Milovanović P., Đurić.M. Innervation of bones: Why it should not be neglected? Med Podml. 2018;69(3):25-32. (In Serbian). doi: 10.5937/mp69-18404.
- Wan Q.Q., Qin W.P., Ma Y.X., Shen M.J., Li J., Zhang Z.B. et al. Crosstalk between Bone and Nerves within Bone. Adv Sci (Weinh). 2021;10;8(7):2003390. doi: 10.1002/advs.202003390.
- Gkiatas I., Papadopoulos D., Pakos E.E., Kostas- Agnantis I., Gelalis I., Vekris M. et al. The Multifactorial Role of Peripheral Nervous System in Bone Growth. Front Phys. 2017;5:44. doi: 10.3389/fphy.2017.00044.
- Танашян М.М., Антонова К.В., Мазур А.С., Спрышков Н.Е. Неврологические заболевания и остеопороз. Эффективная фармакотерапия. 2022;18(19): 42-50. doi: 10.33978/2307-3586-2022-18-19-42-50.
- Tanashyan M.M., Antonova K.V., Mazur A.S., Spryshkov N.E. Neurological Diseases and Osteoporosis. Effective pharmacotherapy. 2022;18(19):42-50.(In Russian). doi: 10.33978/2307-3586-2022-18-19-42-50.
- Elefteriou F. Impact of the Autonomic Nervous System on the Skeleton. Physiol Rev. 2018;98(3):1083-1112. doi: 10.1152/physrev.00014.2017.
- Park G.Y., Im S., Hoon S. Patchy Osteoporosis in Complex Regional Pain Syndrome. Osteoporosis. InTech; 2012. Available from: http://dx.doi.org/10.5772/29181.
- Atkins R.M. Complex regional pain syndrome. J Bone Joint Surg Br. 2003;85(8):1100-1106. doi: 10.1302/0301-620x.85b8.14673.
- Hind K., Johnson M.I. Complex regional pain syndrome in a competitive athlete and regional osteoporosis assessed by dual-energy X-ray absorptiometry: a case report. J Med Case Rep. 2014;8:165. doi: 10.1186/1752-1947-8-165.
- Suyama H., Moriwaki K., Niida S., Maehara Y., Kawamoto M., Yuge O. Osteoporosis following chronic constriction injury of sciatic nerve in rats. J Bone Miner Metab. 2002;20(2):91-97. doi: 10.1007/s007740200012.
- Bosco F., Guarnieri L., Nucera S., Scicchitano M., Ruga S., Cardamone A. et al. Pathophysiological Aspects of Muscle Atrophy and Osteopenia Induced by Chronic Constriction Injury (CCI) of the Sciatic Nerve in Rats. Int J Mol Sci. 2023;24(4):3765. doi: 10.3390/ijms24043765.
- Brouwers J.E., Lambers F.M., van Rietbergen B., Ito K., Huiskes R. Comparison of bone loss induced by ovariectomy and neurectomy in rats analyzed by in vivo micro-CT. J Orthop Res. 2009;27(11):1521-1527. doi: 10.1002/jor.20913.
- Kodama Y., Dimai H.P., Wergedal J., Sheng M., Malpe R., Kutilek S. et al. Cortical tibial bone volume in two strains of mice: effects of sciatic neurectomy and genetic regulation of bone response to mechanical loading. Bone. 1999;25(2):183-190. doi: 10.1016/s8756-3282(99)00155-6.
- Burt-Pichat B., Lafage-Proust M.H., Duboeuf F., Laroche N., Itzstein C., Vico L. et al. Dramatic decrease of innervation density in bone after ovariectomy. Endocrinology. 2005;146(1):503-510. doi: 10.1210/en.2004-0884.
- Monzem S., Javaheri B., de Souza R.L., Pitsillides A.A. Sciatic neurectomy-related cortical bone loss exhibits delayed onset yet stabilises more rapidly than trabecular bone. Bone Rep. 2021;15:101116. doi: 10.1016/j.bonr.2021.101116.
- Ko H.Y., Chang J.H., Shin Y.B., Shin M.J., Shin Y.I., Lee C.H. et al. Changes of lower-limb trabecular bone density after sciatic nerve transection in immature rats. Biomed Res. 2017;28(18):8079-8084.
- Shimada N., Sakata A., Igarashi T., Takeuchi M., Nishimura S. M1 macrophage infiltration exacerbate muscle/bone atrophy after peripheral nerve injury. BMC Musculoskelet Disord. 2020;21(1):44. doi: 10.1186/s12891-020-3069-z.
- Piet J., Hu D., Baron R., Shefelbine S.J. Bone adaptation compensates resorption when sciatic neurectomy is followed by low magnitude induced loading. Bone. 2019;120:487-494. doi: 10.1016/j.bone.2018.12.017.
- Tamaki H., Yotani K., Ogita F., Hayao K., Kirimto H., Onishi H. et al. Low-Frequency Electrical Stimulation of Denervated Skeletal Muscle Retards Muscle and Trabecular Bone Loss in Aged Rats. Int J Med Sci. 2019;16(6):822-830. doi: 10.7150/ijms.32590.
- Ma X., Lv J., Sun X., Ma J., Xing G., Wang Y. et al. Naringin ameliorates bone loss induced by sciatic neurectomy and increases Semaphorin 3A expression in denervated bone. Sci Rep. 2016;6:24562. doi: 10.1038/srep24562.
- Щудло Н.А., Кобызев А.Е., Варсегова Т.Н., Ступина Т.А. Гистоморфометрическая оценка большеберцового нерва и мелких мышц стопы после внутреннего невролиза и аутогенной пластики большеберцовой порции седалищного нерва крыс. Гений ортопедии. 2022:28(6);823-829. doi: 10.18019/1028-4427-2022-28-6-823-829.
- Shchudlo N.A., Kobyzev A.E., Varsegova T.N., Stupina T.A. Histomorphometric assessment of the tibial nerve and small muscles of the foot after internal neurolysis and autogenous plastic surgery of the tibial portion of the sciatic nerve in rats. Orthopaedic Genius. 2022:28(6);823-829. (In Russian). doi: 10.18019/1028-4427-2022-28-6-823-829.
- Щудло М.М., Ступина Т.А., Щудло Н.А. Количественный анализ метахромазии суставного хряща в телепатологии. Известия Челябинского научного центра УрО РАН. 2004;25:17-22.
- Shchudlo M.M., Stupina T.A., Shchudlo N.A. Quantitative analysis of articular cartilage metachromasia in telepathology. Proceedings of the Chelyabinsk Scientific Center of the Ural Branch of the Russian Academy of Sciences. 2004;25:17-22. (In Russian).
- Scholz T., Krichevsky A., Sumarto A., Jaffurs D., Wirth G.A., Paydar K. et al. Peripheral nerve injuries: an international survey of current treatments and future perspectives. J Reconstr Microsurg. 2009;25(6):339-344. doi: 10.1055/s-0029-1215529.
- Höke A. A (heat) shock to the system promotes peripheral nerve regeneration. J Clin Invest. 2011;121(11):4231-4234. doi: 10.1172/JCI59320.
- Scheib J., Höke A. Advances in peripheral nerve regeneration. Nat Rev Neurol. 2013;9(12):668-676. doi: 10.1038/nrneurol.2013.227.
- Григоровский В.В., Страфун С.С., Гайко О.Г., Гайович В.В., Блинова Е.Н. Гистопатологические изменения и корреляционные зависимости морфологических показателей состояния мышц конечностей и клинических данных у больных с последствиями травматических нарушений иннервации. Гений ортопедии. 2014;(4):49-57.
- Grigorovskii V.V., Strafun S.S., Gaiko O.G., Gaiovich V.V., Blinova E.N. Histopathological changes and correlations of the morphological values of limb muscle status and clinical data in patients with the consequences of innervation traumatic disorders. Orthopaedic Genius. 2014;(4):49-57. (In Russian).
- Kambiz S., Duraku L.S., Baas M., Nijhuis T.H., Cosgun S.G., Hovius S.E. et al. Long-term follow-up of peptidergic and nonpeptidergic reinnervation of the epidermis following sciatic nerve reconstruction in rats. J Neurosurg. 2015;123(1):254-269. doi: 10.3171/2014.12.JNS141075.
- Ikeda M., Oka Y. The relationship between nerve conduction velocity and fiber morphology during peripheral nerve regeneration. Brain Behav. 2012;2(4):382-390. doi: 10.1002/brb3.61.
- Şipos R.S., Fechete R., Moldovan D., Sus I. Szasz S., Pávai Z. Assessment of femoral bone osteoporosis in rats treated with simvastatin or fenofibrate. Open Life Sci. 2015;10(1):379-387. doi: 10.1515/biol-2015-0039.
- Zhang C., Yan B., Cui Z., Cui S., Zhang T., Wang X. et al. Bone regeneration in minipigs by intrafibrillarly-mineralized collagen loaded with autologous periodontal ligament stem cells. Sci Rep. 2017;7(1):10519. doi: 10.1038/s41598-017-11155-7.
- Li C.Y., Price C., Delisser K., Nasser P., Laudier D., Clement M. et al. Long-term disuse osteoporosis seems less sensitive to bisphosphonate treatment than other osteoporosis. J Bone Miner Res. 2005;20(1):117-124. doi: 10.1359/JBMR.041010.
- Singh I.J., Gunberg D.L. Quantitative histology of changes with age in rat bone cortex. J Morphol. 1971;133(2):241-251. doi: 10.1002/jmor.1051330208.
- Piemontese M., Almeida M., Robling A.G., Kim H.N., Xiong J., Thostenson J.D. et al. Old age causes de novo intracortical bone remodeling and porosity in mice. JCI Insight. 2017;2(17):e93771. doi: 10.1172/jci.insight.93771.
- Удинцева М.Ю., Зайцев Д.В., Волокитина Е.А., Антропова И.П., Кутепов С.М. Исследование механических свойств костной ткани надацетабулярной области. Гений ортопедии. 2022;28(4):559-564. doi: 10.18019/1028-4427-2022-28-4-559-564.
- Udinceva M.Ju., Zajcev D.V., Volokitina E.A., Antropova I.P., Kutepov S.M. Investigation of bone tissue mechanical properties in the supra-acetabular region. Orthopaedic Genius. 2022;28(4):559-564. (In Russian). doi: 10.18019/1028-4427-2022-28-4-559-564.
Supplementary files
