Role of Infrapatellar Fat Tissue in the Pathogenesis of Knee Osteoarthritis: A Review

Cover Page

Cite item

Full Text

Abstract

Osteoarthritis (OA) is one of the most common joint diseases in the adult population. The role of indolent inflammation and predominance of catabolic cytokines over anabolic ones in OA has now been proven. The influence of obesity on the development of OA by releasing inflammatory mediators by fat tissue has been confirmed. Infrapatellar fat tissue (Hoffa’s fat pad) is a potential donor of proinflammatory cytokines, including specific fat tissue proinflammatory cytokines - adipokines. In a healthy person, infrapatellar fat tissue contributes to the distribution of mechanical load on the joint and metabolism of the synovial fluid. Infiltration of infrapatellar fat tissue by macrophages and lymphocytes leads not only to the production of proinflammatory cytokines with chondrolytic properties, but also to the maintenance of chronic inflammation in the synovial membrane, articular cartilage, and subchondral bone. Morphologic changes in Hoffa’s fat pad can be both an indicator of the inflammatory process in the joint cavity and a predictor of pathologic changes of the joint. Among histological changes, infiltration with macrophages and lymphocytes, fibrosis, thickening of the interlobular septa, reduction in the size of fat lobules and adipocytes, and increased vascularization are important for the course of OA. Morphologic changes can be assessed using a non-invasive method - magnetic resonance imaging, which makes it possible to evaluate the presence and severity of synovitis, thickening of the synovial membrane, edema, thickening of the interlobular septa, and a decrease in the volume of Hoffa’s fat pad. Histologic and tomographic signs can potentially be used to assess the severity of OA and develop prognostic scales. Infrapatellar fat tissue is also a source of mesenchymal stem cells phenotypically similar to chondrocytes, which can be used for regeneration of joint cartilage tissue with minimally invasive intervention to harvest them.

About the authors

Yulia S. Korneva

North-West State Medical University named after I.I. Mechnikov; Smolensk State Medical University

Author for correspondence.
Email: ksu1546@yandex.ru
ORCID iD: 0000-0002-8080-904X

Cand. Sci. (Med.)

Russian Federation, St. Petersburg; Smolensk

Marina B. Borisenko

North-West State Medical University named after I.I. Mechnikov

Email: marina-borisenko-2000@mail.ru
ORCID iD: 0000-0002-2684-2017
Russian Federation, St. Petersburg

References

  1. Cross M., Smith E., Hoy D., Nolte S., Ackerman I., Fransen M. et al. The global burden of hip and knee osteoarthritis: estimates from the global burden of disease 2010 study. Ann Rheum Dis. 2014;73(7):1323-1330. doi: 10.1136/annrheumdis-2013-204763.
  2. Michael J.W., Schlüter-Brust K.U., Eysel P. The epidemiology, etiology, diagnosis, and treatment of osteoarthritis of the knee. Dtsch Arztebl Int. 2010;107(9):152-162. doi: 10.3238/arztebl.2010.0152.
  3. Li Z., Huang Z., Bai L. Cell Interplay in Osteoarthritis. Front Cell Dev Biol. 2021;9:720477. doi: 10.3389/fcell.2021.720477.
  4. Molnar V., Matišić V., Kodvanj I., Bjelica R., Jeleč Ž., Hudetz D. et al. Cytokines and Chemokines Involved in Osteoarthritis Pathogenesis. Int J Mol Sci. 2021;22(17):9208. doi: 10.3390/ijms22179208.
  5. Klein-Wieringa I.R., Kloppenburg M., Bastiaansen-Jenniskens Y.M., Yusuf E., Kwekkeboom J.C., El-Bannoudi H. et al. The infrapatellar fat pad of patients with osteoarthritis has an inflammatory phenotype. Ann Rheum Dis. 2011;70(5):851-857. doi: 10.1136/ard.2010.140046.
  6. Nedunchezhiyan U., Varughese I., Sun A.R., Wu X., Crawford R., Prasadam I. Obesity, Inflammation, and Immune System in Osteoarthritis. Front Immunol. 2022;13:907750. doi: 10.3389/fimmu.2022.907750.
  7. Cajas Santana L.J., Rondón Herrera F., Rojas A.P., Martínez Lozano D.J., Prieto N., Bohorquez Castañeda M. Serum chemerin in a cohort of Colombian patients with primary osteoarthritis. Reumatol Clin (Engl Ed). 2021;17(9):530-535. doi: 10.1016/j.reumae.2020.05.003.
  8. Xie C., Chen Q. Adipokines: New Therapeutic Target for Osteoarthritis? Curr Rheumatol Rep. 2019;21(12):71. doi: 10.1007/s11926-019-0868-z.
  9. Zapata-Linares N., Eymard F., Berenbaum F., Houard X. Role of adipose tissues in osteoarthritis. Curr Opin Rheumatol. 2021;33(1):84-93. doi: 10.1097/BOR.0000000000000763.
  10. Jiang L.F., Fang J.H., Wu L.D. Role of infrapatellar fat pad in pathological process of knee osteoarthritis: Future applications in treatment. World J Clin Cases. 2019;7(16):2134-2142. doi: 10.12998/wjcc.v7.i16.2134.
  11. Ioan-Facsinay A., Kloppenburg M. An emerging player in knee osteoarthritis: the infrapatellar fat pad. Arthritis Res Ther. 2013;15(6):225. doi: 10.1186/ar4422.
  12. Zeng N., Yan Z.P., Chen X.Y., Ni G.X. Infrapatellar Fat Pad and Knee Osteoarthritis. Aging Dis. 2020;11(5): 1317-1328. doi: 10.14336/AD.2019.1116.
  13. Braun S., Zaucke F., Brenneis M., Rapp A.E., Pollinger P., Sohn R. et al. The Corpus Adiposum Infrapatellare (Hoffa’s Fat Pad)-The Role of the Infrapatellar Fat Pad in Osteoarthritis Pathogenesis. Biomedicines. 2022;10(5):1071. doi: 10.3390/biomedicines10051071.
  14. Fontanella C.G., Belluzzi E., Pozzuoli A., Favero M., Ruggieri P., Macchi V. et al. Mechanical behavior of infrapatellar fat pad of patients affected by osteoarthritis. J Biomech. 2022;131:110931. doi: 10.1016/j.jbiomech.2021.110931.
  15. Macchi V., Stocco E., Stecco C., Belluzzi E., Favero M., Porzionato A. et al. The infrapatellar fat pad and the synovial membrane: an anatomo-functional unit. J Anat. 2018;233(2):146-154. doi: 10.1111/joa.12820.
  16. Bohnsack M., Meier F., Walter G.F., Hurschler C., Schmolke S., Wirth C.J. et al. Distribution of substance-P nerves inside the infrapatellar fat pad and the adjacent synovial tissue: a neurohistological approach to anterior knee pain syndrome. Arch Orthop Trauma Surg. 2005;125(9):592-597. doi: 10.1007/s00402-005-0796-4.
  17. He J., Ba H., Feng J., Peng C., Liao Y., Li L. et al. Increased signal intensity, not volume variation of infrapatellar fat pad in knee osteoarthritis: A cross-sectional study based on high-resolution magnetic resonance imaging. J Orthop Surg (Hong Kong). 2022;30(1): 10225536221092215. doi: 10.1177/10225536221092215.
  18. Emmi A., Stocco E., Boscolo-Berto R., Contran M., Belluzzi E., Favero M. et al. Infrapatellar Fat Pad-Synovial Membrane Anatomo-Fuctional Unit: Microscopic Basis for Piezo1/2 Mechanosensors Involvement in Osteoarthritis Pain. Front Cell Dev Biol. 2022;10:886604. doi: 10.3389/fcell.2022.886604.
  19. Belluzzi E., Macchi V., Fontanella C.G., Carniel E.L., Olivotto E., Filardo G. et al. Infrapatellar Fat Pad Gene Expression and Protein Production in Patients with and without Osteoarthritis. Int J Mol Sci. 2020;21(17):6016. doi: 10.3390/ijms21176016.
  20. Eymard F., Chevalier X. Inflammation of the infrapatellar fat pad. Joint Bone Spine. 2016;83(4):389-393. doi: 10.1016/j.jbspin.2016.02.016.
  21. Christoforakis Z., Dermitzaki E., Paflioti E., Katrinaki M., Deiktakis M., Tosounidis T.H. et al. Correlation of systemic metabolic inflammation with knee osteoarthritis. Hormones (Athens). 2022;21(3):457-466. doi: 10.1007/s42000-022-00381-y.
  22. An J.S., Tsuji K., Onuma H., Araya N., Isono M., Hoshino T. et al. Inhibition of fibrotic changes in infrapatellar fat pad alleviates persistent pain and articular cartilage degeneration in monoiodoacetic acid-induced rat arthritis model. Osteoarthritis Cartilage. 2021;29(3):380-388. doi: 10.1016/j.joca.2020.12.014.
  23. Afzali M.F., Radakovich L.B., Sykes M.M., Campbell M.A., Patton K.M., Sanford J.L. et al. Early removal of the infrapatellar fat pad/synovium complex beneficially alters the pathogenesis of moderate stage idiopathic knee osteoarthritis in male Dunkin Hartley guinea pigs. Arthritis Res Ther. 2022;24(1):282. doi: 10.1186/s13075-022-02971-y.
  24. Zhou S., Maleitzke T., Geissler S., Hildebrandt A., Fleckenstein F.N., Niemann M. et al. Source and hub of inflammation: The infrapatellar fat pad and its interactions with articular tissues during knee osteoarthritis. J Orthop Res. 2022;40(7):1492-1504. doi: 10.1002/jor.25347.
  25. Greif D.N., Kouroupis D., Murdock C.J., Griswold A.J., Kaplan L.D., Best T.M. et al. Infrapatellar Fat Pad/Synovium Complex in Early-Stage Knee Osteoarthritis: Potential New Target and Source of Therapeutic Mesenchymal Stem/Stromal Cells. Front Bioeng Biotechnol. 2020;8:860. doi: 10.3389/fbioe.2020.00860.
  26. Wiegertjes R., van de Loo F.A.J., Blaney Davidson E.N. A roadmap to target interleukin-6 in osteoarthritis. Rheumatology (Oxford). 2020;59(10):2681-2694. doi: 10.1093/rheumatology/keaa248.
  27. Zhang Z., Xing X., Hensley G., Chang L.W., Liao W., Abu-Amer Y. et al. Resistin induces expression of proinflammatory cytokines and chemokines in human articular chondrocytes via transcription and messenger RNA stabilization. Arthritis Rheum. 2010;62(7):1993-2003. doi: 10.1002/art.27473.
  28. Zhang Y., Ruan G., Zheng P., Huang S., Zhou X., Liu X. et al. Efficacy and safety of Glucocorticoid injections into InfrapaTellar faT pad in patients with knee ostEoarthRitiS: protocol for the GLITTERS randomized controlled trial. Trials. 2023;24(1):6. doi: 10.1186/s13063-022-06993-4.
  29. Fontanella C.G., Belluzzi E., Pozzuoli A., Scioni M., Olivotto E., Reale D. et al. Exploring Anatomo- Morphometric Characteristics of Infrapatellar, Suprapatellar Fat Pad, and Knee Ligaments in Osteoarthritis Compared to Post-Traumatic Lesions. Biomedicines. 2022;10(6):1369. doi: 10.3390/biomedicines10061369.
  30. Kitagawa T., Kawahata H., Aoki M., Kudo S. Inhibitory effect of low intensity pulsed ultrasound on the fibrosis of the infrapatellar fat pad through the regulation of HIF 1 in a carrageenan induced knee osteoarthritis rat model. Biomed Rep. 2022;17(4):79. doi: 10.3892/br.2022.1562.
  31. Favero M., El-Hadi H., Belluzzi E., Granzotto M., Porzionato A., Sarasin G. et al. Infrapatellar fat pad features in osteoarthritis: a histopathological and molecular study. Rheumatology (Oxford). 2017;56(10): 1784-1793. doi: 10.1093/rheumatology/kex287.
  32. Magarinos N.J., Bryant K.J., Fosang A.J., Adachi R., Stevens R.L., McNeil H.P. Mast cell-restricted, tetramer-forming tryptases induce aggrecanolysis in articular cartilage by activating matrix metalloproteinase-3 and -13 zymogens. J Immunol. 2013;191(3):1404-1412. doi: 10.4049/jimmunol.1300856.
  33. Martel-Pelletier J., Tardif G., Pelletier J.P. An Open Debate on the Morphological Measurement Methodologies of the Infrapatellar Fat Pad to Determine Its Association with the Osteoarthritis Process. Curr Rheumatol Rep. 2022;24(3):76-80. doi: 10.1007/s11926-022-01057-7.
  34. Yu K., Ying J., Zhao T., Lei L., Zhong L., Hu J. et al. Prediction model for knee osteoarthritis using magnetic resonance-based radiomic features from the infrapatellar fat pad: data from the osteoarthritis initiative. Quant Imaging Med Surg. 2023;13(1):352-369. doi: 10.21037/qims-22-368.
  35. Fischer M.A. From Morphology to Biomarker: Quantitative Texture Analysis of the Infrapatellar Fat Pad Reliably Predicts Knee Osteoarthritis. Radiology. 2022;304(3):622-623. doi: 10.1148/radiol.221094.
  36. Hunter D.J., Guermazi A., Lo G.H., Grainger A.J., Conaghan P.G., Boudreau R.M. et al. Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score). Osteoarthritis Cartilage. 2011;19:990-1002. doi: 10.1016/j.joca.2011.05.004.
  37. Tan H., Kang W., Fan Q., Wang B., Yu Y., Yu N. et al. Intravoxel Incoherent Motion Diffusion-Weighted MR Imaging Findings of Infrapatellar Fat Pad Signal Abnormalities: Comparison Between Symptomatic and Asymptomatic Knee Osteoarthritis. Acad Radiol. 2023;30(7):1374-1383. doi: 10.1016/j.acra.2022.11.010.
  38. Buckley C.T., Vinardell T., Kelly D.J. Oxygen tension differentially regulates the functional properties of cartilaginous tissues engineered from infrapatellar fat pad derived MSCs and articular chondrocytes. Osteoarthritis Cartilage. 2010;18(10):1345-1354. doi: 10.1016/j.joca.2010.07.004.
  39. Koh Y.G., Jo S.B., Kwon O.R., Suh D.S., Lee S.W., Park S.H. et al. Mesenchymal stem cell injections improve symptoms of knee osteoarthritis. Arthroscopy. 2013;29(4):748-755. doi: 10.1016/j.arthro.2012.11.017.
  40. Segawa Y., Muneta T., Makino H., Nimura A., Mochizuki T., Ju Y.J. et al. Mesenchymal stem cells derived from synovium, meniscus, anterior cruciate ligament, and articular chondrocytes share similar gene expression profiles. J Orthop Res. 2009;27(4):435-441. doi: 10.1002/jor.20786.
  41. Luo L., O’Reilly A.R., Thorpe S.D., Buckley C.T., Kelly D.J. Engineering zonal cartilaginous tissue by modulating oxygen levels and mechanical cues through the depth of infrapatellar fat pad stem cell laden hydrogels. J Tissue Eng Regen Med. 2017;11(9):2613-2628. doi: 10.1002/term.2162.
  42. Prabhakar A., Lynch A.P., Ahearne M. Self-Assembled Infrapatellar Fat-Pad Progenitor Cells on a Poly--Caprolactone Film For Cartilage Regeneration. Artif Organs. 2016;40(4):376-384. doi: 10.1111/aor.12565.
  43. Mesallati T., Sheehy E.J., Vinardell T., Buckley C.T., Kelly D.J. Tissue engineering scaled-up, anatomically shaped osteochondral constructs for joint resurfacing. Eur Cell Mater. 2015;30:163-185; discussion 185-186. doi: 10.22203/ecm.v030a12.
  44. Mesallati T., Buckley C.T., Kelly D.J. Engineering cartilaginous grafts using chondrocyte-laden hydrogels supported by a superficial layer of stem cells. J Tissue Eng Regen Med. 2017;11(5):1343-1353. doi: 10.1002/term.2033.
  45. Wu J., Kuang L., Chen C., Yang J., Zeng W.N., Li T. et al. miR-100-5p-abundant exosomes derived from infrapatellar fat pad MSCs protect articular cartilage and ameliorate gait abnormalities via inhibition of mTOR in osteoarthritis. Biomaterials. 2019;206:87-100. doi: 10.1016/j.biomaterials.2019.03.022.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».