Peroneus longus tendon autograft for one-stage revision acl reconstruction: mid-term results

Cover Page

Cite item

Full Text

Abstract

Background. The results of revision anterior cruciate ligament reconstruction (ACLR) are usually worse than the primary ACLR. The positive outcome of the revision ACLR is significantly influenced by the following factors: anatomical position of bone tunnels, correct choice of graft, its preparation and fixation method. Equally important is to choose the accurate indications for additional extraarticular interventions.

The aim of the study is to evaluate the role of a peroneus longus tendon (PLT) autograft in one-stage revision ACL reconstruction and to compare the obtained data with the results of primary ACLR.

Methods. The comparison was carried out between the RACL-PLT group (n = 29) and the PACL-HT group (n = 82), which underwent single-stage revision ACLR with a PLT autograft and primary ACLR with a hamstring tendons (HT) autograft, respectively. Subjective and objective evaluation was performed on the KOOS, IKDC, and Lysholm Knee scales. Also, in the RACL-PLT group, the position of the central entry points into the primary and revision tunnels was determined.

Results. We observed no statistically significant differences during the objective assessment of knee joint stability between the groups (p>0.999). During the subjective assessment on the KOOS, IKDC and Lysholm Knee scales, significantly higher results were obtained in the PACL-HT group (p<0.001). The position of the central entry points into the revision tunnels corresponded to the normative values in all cases.

Conclusions. The analysis of the use of a PLT autograft in revision ACLR, as well as the achievement of the anatomical position of the revision tunnels showed: 12 months after surgery, the results of an objective assessment between the revision and primary ACLR are comparable; the results of a subjective assessment are statistically significantly different. However, the differences in indicators do not reach a minimal clinically important difference.

About the authors

Anton S. Gofer

Tsivyan Novosibirsk Research Institute of Traumatology and Orthopaedics

Author for correspondence.
Email: a.hofer.ortho@gmail.com
ORCID iD: 0009-0000-3886-163X
Russian Federation, Novosibirsk

Aleksandr A. Alekperov

Tsivyan Novosibirsk Research Institute of Traumatology and Orthopaedics

Email: alecperov@mail.ru
ORCID iD: 0000-0003-3264-8146
Russian Federation, Novosibirsk

Mikhail B. Gurazhev

Tsivyan Novosibirsk Research Institute of Traumatology and Orthopaedics

Email: tashtagol@inbox.ru
ORCID iD: 0000-0002-6398-9413
Russian Federation, Novosibirsk

Artem K. Avdeev

Tsivyan Novosibirsk Research Institute of Traumatology and Orthopaedics

Email: avdeev.artiom@mail.ru
ORCID iD: 0009-0008-9147-5808
Russian Federation, Novosibirsk

Vitaly L. Lukinov

Tsivyan Novosibirsk Research Institute of Traumatology and Orthopaedics

Email: vitaliy.lukinov@gmail.com
ORCID iD: 0000-0002-3411-508X

Cand. Sci. (Phys.-Mat.)

Russian Federation, Novosibirsk

Dmitriy V. Rubtsov

Tsivyan Novosibirsk Research Institute of Traumatology and Orthopaedics

Email: rubic.dv@yandex.ru
ORCID iD: 0009-0007-1490-9783
Russian Federation, Novosibirsk

Vitaliy V. Pavlov

Tsivyan Novosibirsk Research Institute of Traumatology and Orthopaedics

Email: pavlovdoc@mail.ru
ORCID iD: 0000-0002-8997-7330

Dr. Sci. (Med.)

Russian Federation, Novosibirsk

Andrey A. Korytkin

Tsivyan Novosibirsk Research Institute of Traumatology and Orthopaedics

Email: andrey.korytkin@gmail.com
ORCID iD: 0000-0001-9231-5891
SPIN-code: 2273-2241

Cand. Sci. (Med.)

Russian Federation, Novosibirsk

References

  1. Paudel Y.R., Sommerfeldt M., Voaklander D. Increasing incidence of anterior cruciate ligament reconstruction: a 17-year population-based study. Knee Surg Sports Traumatol Arthrosc. 2023;31(1):248-255. doi: 10.1007/s00167-022-07093-1.
  2. Chia L., De Oliveira Silva D., Whalan M., McKay M.J., Sullivan J., Fuller C.W. et al. Non-contact Anterior Cruciate Ligament Injury Epidemiology in Team-Ball Sports: A Systematic Review with Meta-analysis by Sex, Age, Sport, Participation Level, and Exposure Type. Sports Med. 2022;52(10):2447-2467. doi: 10.1007/s40279-022-01697-w.
  3. Montalvo A.M., Schneider D.K., Webster K.E., Yut L., Galloway M.T., Heidt R.S. Jr. et al. Anterior Cruciate Ligament Injury Risk in Sport: A Systematic Review and Meta-Analysis of Injury Incidence by Sex and Sport Classification. J Athl Train. 2019;54(5):472-482. doi: 10.4085/1062-6050-407-16.
  4. Grassi A., Kim C., Marcheggiani Muccioli G.M., Zaffagnini S., Amendola A. What Is the Mid-term Failure Rate of Revision ACL Reconstruction? A Systematic Review. Clin Orthop Relat Res. 2017;475(10):2484-2499. doi: 10.1007/s11999-017-5379-5.
  5. van Eck C.F., Schkrohowsky J.G., Working Z.M., Irrgang J.J., Fu F.H. Prospective analysis of failure rate and predictors of failure after anatomic anterior cruciate ligament reconstruction with allograft. Am J Sports Med. 2012;40(4):800-807. doi: 10.1177/0363546511432545.
  6. Li X., Yan L., Li D., Fan Z., Liu H., Wang G. et al. Failure modes after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Int Orthop. 2023;47(3):719-734. doi: 10.1007/s00264-023-05687-z.
  7. Rahardja R., Zhu M., Love H., Clatworthy M.G., Monk A.P., Young S.W. Factors associated with revision following anterior cruciate ligament reconstruction: A systematic review of registry data. Knee. 2020;27(2): 287-299. doi: 10.1016/j.knee.2019.12.003.
  8. Gifstad T., Drogset J.O., Viset A., Grøntvedt T., Hortemo G.S. Inferior results after revision ACL reconstructions: a comparison with primary ACL reconstructions. Knee Surg Sports Traumatol Arthrosc. 2013;21(9):2011-2018. doi: 10.1007/s00167-012-2336-4.
  9. Grassi A., Ardern C.L., Marcheggiani Muccioli G.M., Neri M.P., Marcacci M., Zaffagnini S. Does revision ACL reconstruction measure up to primary surgery? A meta-analysis comparing patient-reported and clinician-reported outcomes, and radiographic results. Br J Sports Med. 2016;50(12):716-724. doi: 10.1136/bjsports-2015-094948.
  10. Сапрыкин А.C., Банцер С.А., Рябинин М.В., Корнилов Н.Н. Современные аспекты предоперационного планирования и выбора хирургической методики ревизионной реконструкции передней крестообразной связки. Гений ортопедии. 2022;28(3):444-451. doi: 10.18019/1028-4427-2022-28-3-444-451. Saprykin A.S., Bantser S.A., Rybinin M.V., Kornilov N.N. Current Aspects of Preoperative Planning and Selection of Surgical Techniques for Revision Anterior Cruciate Ligament Reconstruction. Genij Ortopedii. 2022;28(3):444-451. (In Russian). doi: 10.18019/1028-4427-2022-28-3-444-451.
  11. Schlumberger M., Schuster P., Schulz M., Immendörfer M., Mayer P., Bartholomä J. et al. Traumatic graft rupture after primary and revision anterior cruciate ligament reconstruction: retrospective analysis of incidence and risk factors in 2915 cases. Knee Surg Sports Traumatol Arthrosc. 2017;25(5):1535-1541. doi: 10.1007/s00167-015-3699-0.
  12. Vermeijden H.D., Yang X.A., Van der List J.P., DiFelice G.S., Rademakers M.V., Kerkhoffs G.M. et al. Trauma and femoral tunnel position are the most common failure modes of anterior cruciate ligament reconstruction: a systematic review. Knee Surg Sports Traumatol Arthrosc. 2020;28(11):3666-3675. doi: 10.1007/s00167-020-06160-9.
  13. Trojani C., Sbihi A., Djian P., Potel J.F., Hulet C., Jouve F. et al. Causes for failure of ACL reconstruction and influence of meniscectomies after revision. Knee Surg Sports Traumatol Arthrosc. 2011;19(2):196-201. doi: 10.1007/s00167-010-1201-6.
  14. MARS Group; MARS Group. Effect of graft choice on the outcome of revision anterior cruciate ligament reconstruction in the Multicenter ACL Revision Study (MARS) Cohort. Am J Sports Med. 2014;42(10): 2301-2310. doi: 10.1177/0363546514549005.
  15. Ahn J.H., Son D.W., Jeong H.J., Park D.W., Lee I.G. One-Stage Anatomical Revision Anterior Cruciate Ligament Reconstruction: Results According to Tunnel Overlaps. Arthroscopy. 2021;37(4):1223-1232. doi: 10.1016/j.arthro.2020.11.029.
  16. He J., Tang Q., Ernst S., Linde M.A., Smolinski P., Wu S. et al. Peroneus longus tendon autograft has functional outcomes comparable to hamstring tendon autograft for anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2021;29(9):2869-2879. doi: 10.1007/s00167-020-06279-9.
  17. Rhatomy S., Asikin AI.Z., Wardani A.E., Rukmoyo T., Lumban-Gaol I., Budhiparama N.C. Peroneus longus autograft can be recommended as a superior graft to hamstring tendon in single-bundle ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2019;27(11):3552-3559. doi: 10.1007/s00167-019-05455-w.
  18. Higgins L.D., Taylor M.K., Park D., Ghodadra N., Marchant M., Pietrobon R. et al. Reliability and validity of the International Knee Documentation Committee (IKDC) Subjective Knee Form. Joint Bone Spine. 2007;74(6):594-599. doi: 10.1016/j.jbspin.2007.01.036.
  19. Lysholm J., Gillquist J. Evaluation of knee ligament surgery results with special emphasis on use of a scoring scale. Am J Sports Med. 1982;10(3):150-154. doi: 10.1177/036354658201000306.
  20. Roos E.M., Lohmander L.S. The Knee injury and Osteoarthritis Outcome Score (KOOS): from joint injury to osteoarthritis. Health Qual Life Outcomes. 2003;1:64. doi: 10.1186/1477-7525-1-64.
  21. Kitaoka H.B., Alexander I.J., Adelaar R.S., Nunley J.A., Myerson M.S., Sanders M. Clinical rating systems for the ankle-hindfoot, midfoot, hallux, and lesser toes. Foot Ankle Int. 1994;15(7):349-353. doi: 10.1177/107110079401500701.
  22. Bernard M., Hertel P., Hornung H., Cierpinski Th. Femoral insertion of the ACL: radiographic quadrant method. Am J Knee Surg. 1997;10:14-22.
  23. Tsukada H., Ishibashi Y., Tsuda E., Fukuda A., Toh S. Anatomical analysis of the anterior cruciate ligament femoral and tibial footprints. J Orthop Sci. 2008;13(2): 122-129. doi: 10.1007/s00776-007-1203-5.
  24. Harris J.D., Brand J.C., Cote M.P., Faucett S.C., Dhawan A. Research Pearls: The Significance of Statistics and Perils of Pooling. Part 1: Clinical Versus Statistical Significance. Arthroscopy. 2017;33(6):1102-1112. doi: 10.1016/j.arthro.2017.01.053.
  25. Weiler A., Schmeling A., Stöhr I., Kääb M.J., Wagner M. Primary versus single-stage revision anterior cruciate ligament reconstruction using autologous hamstring tendon grafts: a prospective matched-group analysis. Am J Sports Med. 2007;35(10):1643-1652. doi: 10.1177/0363546507303114.
  26. Wright R.W., Gill C.S., Chen L., Brophy R.H., Matava M.J., Smith M.V. et al. Outcome of revision anterior cruciate ligament reconstruction: a systematic review. J Bone Joint Surg Am. 2012;94(6):531-536. doi: 10.2106/JBJS.K.00733.
  27. Ahn J.H., Lee Y.S., Ha H.C. Comparison of revision surgery with primary anterior cruciate ligament reconstruction and outcome of revision surgery between different graft materials. Am J Sports Med. 2008;36(10):1889-1895. doi: 10.1177/0363546508317124.
  28. Банцер С.А., Трачук А.П., Богопольский О.Е., Тихилов Р.М., Сушков И.В., Мурга Е.Я. Влияние положения туннелей на результаты транстибиальной реконструкции передней крестообразной связки. Травматология и ортопедия России. 2017;23(3):7-16. doi: 10.21823/2311-2905-2017-23-3-7-16. Bantser S.A., Trachuk A.P., Bogopol’sky O.E., Tikhilov R.M., Sushkov I.V., Murga E.Yа. Effect of Bone Tunnels Positioning on Outcomes of Transtibial Anterior Cruciate Ligament Reconstruction. Traumatology and Orthopedics of Russia. 2017;23(3):7-16. (In Russian). doi: 10.21823/2311-2905-2017-23-3-7-16.
  29. Morgan J.A., Dahm D., Levy B., Stuart M.J. MARS Study Group. Femoral tunnel malposition in ACL revision reconstruction. J Knee Surg. 2012;25(5):361-368. doi: 10.1055/s-0031-1299662.
  30. Гофер А.С., Алекперов А.А., Гуражев М.Б., Авдеев А.К., Павлов В.В., Корыткин А.А. Ревизионная реконструкция передней крестообразной связки: современные подходы к предоперационному планированию (систематический обзор литературы). Травматология и ортопедия России. 2023;29(3):136-148. doi: 10.17816/2311-2905-2130. Gofer A.S., Alekperov A.A., Gurazhev M.B., Avdeev A.K., Pavlov V.V., Korytkin A.A. Revision Anterior Cruciate Ligament Reconstruction: Current Approaches to Preoperative Planning (Systematic Review). Traumatology and Orthopedics of Russia. 2023;29(3): 136-148. (In Russian). doi: 10.17816/2311-2905-2130.
  31. Рыбин А.В., Кузнецов И.А., Румакин В.П., Нетылько Г.И., Ломая М.П. Экспериментально-морфологические аспекты несостоятельности сухожильных ауто- и аллотрансплантатов после реконструкции передней крестообразной связки коленного сустава в раннем послеоперационном периоде. Травматология и ортопедия России. 2016;22(4):60-75. doi: 10.21823/2311-2905-2016-22-4-60-75. Rybin A.V., Kuznetsov I.A., Rumakin V.P., Netylko G.I., Lomaya M.P. Experimental and Morphological Aspects of failed Tendon Auto- and Allografts after ACL Reconstruction in Early Postoperative Period. Traumatology and Orthopedics of Russia. 2016;22(4):60-75. (in Russian). doi: 10.21823/2311-2905-2016-22-4-60-75.
  32. Lu H., Chen C., Xie S., Tang Y., Qu J. Tendon Healing in Bone Tunnel after Human Anterior Cruciate Ligament Reconstruction: A Systematic Review of Histological Results. J Knee Surg. 2019;32(5):454-462. doi: 10.1055/s-0038-1653964.
  33. Гофер А.С., Алекперов А.А., Гуражев М.Б., Авдеев А.К., Лукинов В.Л., Рубцов Д.В. и др. Среднесрочные результаты одноэтапной ревизионной реконструкции передней крестообразной связки: ретроспективный анализ 36 случаев. Травматология и ортопедия России. 2024;30(1):76-88. doi: 10.17816/2311-2905-17415. Gofer A.S., Alekperov A.A., Gurazhev M.B., Avdeev A.K., Lukinov V.L., Rubtsov D.V. et al. Mid-term Results of a Single-Stage Revision Anterior Cruciate Ligament Reconstruction: A Retrospective Analysis of 36 Cases. Traumatology and Orthopedics of Russia. 2024;30(1): 76-88. (In Russian). doi: 10.17816/2311-2905-17415.
  34. Satora W., Królikowska A., Czamara A., Reichert P. Synthetic grafts in the treatment of ruptured anterior cruciate ligament of the knee joint. Polim Med. 2017;47(1):55-59. doi: 10.17219/pim/76819.
  35. Di Benedetto P., Di Benedetto E., Fiocchi A., Beltrame A., Causero A. Causes of Failure of Anterior Cruciate Ligament Reconstruction and Revision Surgical Strategies. Knee Surg Relat Res. 2016;28(4):319-324. doi: 10.5792/ksrr.16.007.
  36. Phatama K.Y., Hidayat M., Mustamsir E., Pradana A.S., Dhananjaya B., Muhammad S.I. Tensile strength comparison between hamstring tendon, patellar tendon, quadriceps tendon and peroneus longus tendon: a cadaver research. J Arthrosc Joint Surg. 2019;6(2): 114-116. doi: 10.1016/j.jajs.2019.02.003.
  37. Михайлов И.Н., Пусева М.Э., Бальжинимаев Д.Б., Семенов А.В., Верхотуров В.В., Верхотурова Е.В. Сравнительное определение механической прочности моделей трансплантатов из половины сухожилия длинной малоберцовой мышцы и сухожилия полусухожильной мышцы (экспериментальное исследование). Гений ортопедии. 2021;27(6):789-794. doi: 10.18019/1028-4427-2021-27-6-789-794. Mikhaylov I.N., Puseva M.E., Balzhinimaev D.B., Semenov A.V., Verkhoturov V.V., Verkhoturova E.V. Comparative determination of the mechanical strength of the grafts models of the half of the peroneus longus tendon and the semitendinosus tendon (experimental study). Genij Ortopedii. 2021;27(6):789-794. (In Russian). doi: 10.18019/1028-4427-2021-27-6-789-794.
  38. Sengoku T., Nakase J., Asai K., Yoshimizu R., Sakurai G., Yoshida S. et al. The effect of gracilis tendon harvesting in addition to semitendinosus tendon harvesting on knee extensor and flexor strength after anterior cruciate ligament reconstruction. Arch Orthop Trauma Surg. 2022;142(3):465-470. doi: 10.1007/s00402-021-03877-1.
  39. Trasolini N.A., Lan R., Bolia I.K., Hill W., Thompson A.A., Mayfield C.K. et al. Knee Extensor Mechanism Complications After Autograft Harvest in ACL Reconstruction: A Systematic Review and Meta-analysis. Orthop J Sports Med. 2023;11(7):23259671231177665. doi: 10.1177/23259671231177665.
  40. Monaco E., Fabbri M., Redler A., Gaj E., De Carli A., Argento G. et al. Anterior cruciate ligament reconstruction is associated with greater tibial tunnel widening when using a bioabsorbable screw compared to an all-inside technique with suspensory fixation. Knee Surg Sports Traumatol Arthrosc. 2019;27(8):2577-2584. doi: 10.1007/s00167-018-5275-x.
  41. Colatruglio M., Flanigan D.C., Long J., DiBartola A.C., Magnussen R.A. Outcomes of 1- Versus 2-Stage Revision Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-analysis. Am J Sports Med. 2021;49(3):798-804. doi: 10.1177/0363546520923090.
  42. Domnick C., Herbort M., Raschke M.J., Habermann S., Schliemann B., Petersen W. et al. Anterior Cruciate Ligament Soft Tissue Graft Fixation in the Elderly: Is There a Reason to Use Interference Screws? A Human Cadaver Study. Arthroscopy. 2017;33(9):1694-1700. doi: 10.1016/j.arthro.2017.03.017.
  43. Eichinger M., Ploner M., Degenhart G., Rudisch A., Smekal V., Attal R. et al. Tunnel widening after ACL reconstruction with different fixation techniques: aperture fixation with biodegradable interference screws versus all-inside technique with suspensory cortical buttons. 5-year data from a prospective randomized trial. Arch Orthop Trauma Surg. 2023;143(11):6707-6718. doi: 10.1007/s00402-023-05001-x.
  44. Devitt B.M., Maes M., Feller J.A., Webster K.E. No long-term tunnel enlargement following anterior cruciate ligament reconstruction using autograft hamstring tendon with dual suspensory fixation. Knee Surg Sports Traumatol Arthrosc. 2020;28(7):2157-2162. doi: 10.1007/s00167-019-05741-7.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Flowchart of the study design

Download (52KB)
3. Fig. 2. Schematic representation of the interposition of the entries into the primary and planned tunnels in the tibia to make a decision on performing a one-stage ACL revision: a — the planned entry into the revision tunnel (marked in green) completely coincides with the entry into the primary tunnel (marked in red), the diameter of the primary tunnel <10 mm; b — the planned entry into the revision tunnel (marked in green) does not coincide with the entry into the primary tunnel (marked in red); E — position of the central attachment point of the native ACL on the tibia using the method of anatomical coordinate axes; EX — distance from the anterior edge of the tibial plateau (43.8%); EY — distance from the medial edge of the tibial plateau (48.9%)

Download (48KB)
4. Fig. 3. Schematic representation of the interposition of the entries into the primary and planned femoral tunnels to make a decision on performing a one-stage ACL revision: a — the planned entry into the revision tunnel (marked in green) completely coincides with the entry into the primary tunnel (marked in red), the diameter of the primary tunnel <10 mm; b — the planned entry into the revision tunnel (marked in green) does not coincide with the entry into the primary tunnel (marked in red); G — position of the central attachment point of the native ACL on the femur according to the square method of M. Bernard et al. [22]; Gh (%) — distance from the deepest point of the medial edge of the lateral femoral condyle (29.9%); Gt (%) — distance from the Blumensaat’s line (30.1%)

Download (38KB)
5. Fig. 4. Average position and standard deviation of the coordinates of the central entry points of the primary (marked in red) and revision tunnels (marked in green) of the tibia: EX (%) — distance from the anterior edge of the tibial plateau; EY (%) — distance from the medial edge of the tibial plateau

Download (29KB)
6. Fig. 5. Average position and standard deviation of the coordinates of the central entry points of the primary (marked in red) and revision tunnels (marked in green) of the femur: Gh (%) — distance from the deepest point of the medial edge of the lateral femoral condyle; Gt (%) — distance from the Blumensaat’s line

Download (19KB)

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».