Risk of thromboembolism after intraosseous implantation of metallic devices with extracellular vesicles derived from multipotent stromal cells: preliminary results
- Authors: Maiborodin I.V.1, Ryaguzov M.E.1, Kuzkin S.A.2, Shevela A.A.1, Sheplev B.V.1, Marinkin I.O.1, Maiborodina V.I.1, Lushnikova E.L.2
-
Affiliations:
- Institute of Chemical Biology and Fundamental Medicine Siberian Branch of the Russian Academy of Sciences
- Federal Research Center for Fundamental and Translational Medicine
- Issue: Vol 30, No 2 (2024)
- Pages: 131-142
- Section: Theoretical and experimental studies
- URL: https://journal-vniispk.ru/2311-2905/article/view/260243
- DOI: https://doi.org/10.17816/2311-2905-17519
- ID: 260243
Cite item
Full Text
Abstract
Background. New implantation methods are of great importance due to the development of endoprostheses in traumatology and orthopedics, restorative medicine and dentistry. Equally important is the early detection and description of the implant-associated complications.
The aim of the study is to find and describe thrombi and emboli in the heart and lungs formed after experimental implantation of metallic devices in the peripheral part of limb using extracellular vesicles of mesenchymal stromal cells.
Methods. Outbred rabbits of both genders at the age from 4 to 6 months and of weight from 3 to 4 kg underwent experimental implantation. The study enrolled 57 species in total. They were divided into two groups: 30 animals underwent implantation of metallic devices using extracellular vesicles of mesenchymal stromal cells (EV MSCs), 27 — without their use. The rabbits’ hearts and lungs were studied by light microscopy methods at different stages after integration of screw titanium implants into the proximal condyle of the tibia using EV MSCs.
Results. After implantation of metallic devices into the proximal condyle of the tibia, we detected fibrin, detritus and even the red bone marrow structures (various blast forms of hematopoietic cells: megakaryocytes, cells of the erythroid and myeloid lineages) in the right cavities of the heart. In the pulmonary arteries, we also found thrombi and emboli, which either led to the obliteration of the involved vessel or to gradual lysis, not disappearing completely within 10 days of follow-up.
Conclusions. After intraosseous implantation of the metallic devices, there is an embolism risk in the right atria and ventricle of the heart and the pulmonary arteries and veins due to the debris migration with the bloodstream from the surgery site. At the same time, one cannot exclude a thrombotic risk in the heart and pulmonary arteries as a reaction to the presence of detritus. It is advisable to take measures aimed at preventing both debris releasing into the bloodstream and pulmonary embolism during any implantations into the bone tissues, even of relatively small devices. Using EV MSCs to affect the implant engraftment processes has no significant effect on the severity and frequency of thromboembolic complications.
Full Text
##article.viewOnOriginalSite##About the authors
Igor V. Maiborodin
Institute of Chemical Biology and Fundamental Medicine Siberian Branch of the Russian Academy of Sciences
Author for correspondence.
Email: imai@mail.ru
ORCID iD: 0000-0002-8182-5084
Dr. Sci (Med.), Professor
Russian Federation, NovosibirskMaksim E. Ryaguzov
Institute of Chemical Biology and Fundamental Medicine Siberian Branch of the Russian Academy of Sciences
Email: rymax@mail.ru
ORCID iD: 0000-0002-5279-3650
Cand. Sci (Med.)
Russian Federation, NovosibirskSergey A. Kuzkin
Federal Research Center for Fundamental and Translational Medicine
Email: acutus@mail.ru
ORCID iD: 0000-0002-9046-0099
Cand. Sci (Med.)
Russian Federation, NovosibirskAleksandr A. Shevela
Institute of Chemical Biology and Fundamental Medicine Siberian Branch of the Russian Academy of Sciences
Email: mdshevela@gmail.com
ORCID iD: 0000-0001-9235-9384
Dr. Sci (Med.)
Russian Federation, NovosibirskBoris V. Sheplev
Institute of Chemical Biology and Fundamental Medicine Siberian Branch of the Russian Academy of Sciences
Email: shepa@icloud.com
ORCID iD: 0009-0008-4140-3531
Dr. Sci (Med.)
Russian Federation, NovosibirskIgor O. Marinkin
Institute of Chemical Biology and Fundamental Medicine Siberian Branch of the Russian Academy of Sciences
Email: rector@ngmu.ru
ORCID iD: 0000-0002-9409-4823
Dr. Sci (Med.), Professor
Russian Federation, NovosibirskVitalina I. Maiborodina
Institute of Chemical Biology and Fundamental Medicine Siberian Branch of the Russian Academy of Sciences
Email: mai_@mail.ru
ORCID iD: 0000-0002-5169-6373
Dr. Sci (Med.)
Russian Federation, NovosibirskElena L. Lushnikova
Federal Research Center for Fundamental and Translational Medicine
Email: pathol@inbox.ru
ORCID iD: 0000-0002-3269-2465
Dr. Sci (Biol.), Professor
Russian Federation, NovosibirskReferences
- Li T., Wang Q., Wang W., Yang J., Dong S. One filter may be enough for duplicate inferior vena cava filter implantation in patients with deep venous thrombosis: Two cases report. Medicine (Baltimore). 2022;101(52): e32480. doi: 10.1097/MD.0000000000032480.
- Shah K.J., Roy T.L. Catheter-Directed Interventions for the Treatment of Lower Extremity Deep Vein Thrombosis. Life (Basel). 2022;12(12):1984. doi: 10.3390/life12121984.
- Marques M.A., Fiorelli S.K.A., Barros B.C.S., Ribeiro A.J.A., Ristow A.V., Fiorelli R.K.A. Protocol for prophylaxis of venous thromboembolism in varicose vein surgery of the lower limbs. Rev Col Bras Cir. 2022;49:e20223326. doi: 10.1590/0100-6991e-20223326-en.
- Bharti N., Mahajan S. Massive pulmonary embolism leading to cardiac arrest after tourniquet deflation following lower limb surgery. Anaesth Intensive Care. 2009;37(5):867-868.
- Drouin L., Pistorius MA., Lafforgue A., N’Gohou C., Richard A., Connault J. et al. Upper-extremity venous thrombosis: A retrospective study about 160 cases. Rev Med Interne. 2019;40(1):9-15. (In French). doi: 10.1016/j.revmed.2018.07.012.
- Khan O., Marmaro A., Cohen D.A. A review of upper extremity deep vein thrombosis. Postgrad Med. 2021;133(sup1):3-10. doi: 10.1080/00325481.2021.1892390.
- Duan Y., Wang G.L., Guo X., Yang LL., Tian F.G. Acute pulmonary embolism originating from upper limb venous thrombosis following breast cancer surgery: Two case reports. World J Clin Cases. 2022;10(21):7445-7450. doi: 10.12998/wjcc.v10.i21.7445.
- Major K.M., Bulic S., Rowe V.L., Patel K., Weaver F.A. Internal jugular, subclavian, and axillary deep venous thrombosis and the risk of pulmonary embolism. Vascular. 2008;16(2):73-79. doi: 10.2310/6670.2008.00019.
- Kim S., Ahn H., Shin S.A., Park J.H., Won C.W. Trends of thromboprophylaxis and complications after major lower limb orthopaedic surgeries in Korea: National Health Insurance Claim Data. Thromb Res. 2017;155:48-52. doi: 10.1016/j.thromres.2017.04.023.
- Heijboer R.R.O., Lubberts B., Guss D., Johnson A.H., DiGiovanni C.W. Incidence and Risk Factors Associated with Venous Thromboembolism After Orthopaedic Below-knee Surgery. J Am Acad Orthop Surg. 2019;27(10):e482-e490. doi: 10.5435/JAAOS-D-17-00787.
- Gurunathan U., Barras M., McDougall C., Nandurkar H., Eley V. Obesity and the Risk of Venous Thromboembolism after Major Lower Limb Orthopaedic Surgery: A Literature Review. Thromb Haemost. 2022; 122(12):1969-1979. doi: 10.1055/s-0042-1757200.
- Grandi G., Antonini E., Bianchi C. Pulmonary bone-marrow embolism. Analysis of 53 cases. Minerva Med. 1978;69(8):491-494. (In Italian).
- Orlowski J.P., Julius C.J., Petras R.E., Porembka D.T., Gallagher J.M. The safety of intraosseous infusions: risks of fat and bone marrow emboli to the lungs. Ann Emerg Med. 1989;18(10):1062-1067. doi: 10.1016/s0196-0644(89)80932-1.
- Kemona A., Nowak H.F., Dziecioł J., Sulik M., Sulkowski S. Pulmonary bone marrow embolism in nonselected autopsy material. Patol Pol. 1989;40(2): 197-204. (In Polish).
- Koessler M.J., Pitto R.P. Fat and bone marrow embolism in total hip arthroplasty. Acta Orthop Belg. 2001;67(2):97-109.
- Issack P.S., Lauerman M.H., Helfet D.L., Sculco T.P., Lane J.M. Fat embolism and respiratory distress associated with cemented femoral arthroplasty. Am J Orthop (Belle Mead NJ). 2009;38(2):72-76.
- Sharma P., Gautam A., Kumar P., Malhotra P., Nada R., Ahluwalia J. Bone marrow emboli following bone marrow procedure: A possible complication. Indian J Pathol Microbiol. 2022;65(4):946-947. doi: 10.4103/ijpm.ijpm_442_21.
- Maiborodin I., Shevela A., Matveeva V., Morozov V., Toder M., Krasil’nikov S. et al. First Experimental Study of the Influence of Extracellular Vesicles Derived from Multipotent Stromal Cells on Osseointegration of Dental Implants. Int J Mol Sci. 2021;22(16):8774. doi: 10.3390/ijms22168774.
- Maiborodin I., Shevela A., Toder M., Marchukov S., Tursunova N., Klinnikova M. et al. Multipotent Stromal Cell Extracellular Vesicle Distribution in Distant Organs after Introduction into a Bone Tissue Defect of a Limb. Life (Basel). 2021;11(4):306. doi: 10.3390/life11040306.
- Maiborodin I., Klinnikova M., Kuzkin S., Maiborodina V., Krasil’nikov S., Pichigina A. et al. Morphology of the Myocardium after Experimental Bone Tissue Trauma and the Use of Extracellular Vesicles Derived from Mesenchymal Multipotent Stromal Cells. J Pers Med. 2021;11(11):1206. doi: 10.3390/jpm11111206.
- Coipeau P., Rosset P., Langonne A., Gaillard J., Delorme B., Rico A. et al. Impaired differentiation potential of human trabecular bone mesenchymal stromal cells from elderly patients. Cytotherapy. 2009;11(5):584-594. doi: 10.1080/14653240903079385.
- Martins A.A., Paiva A., Morgado J.M., Gomes A., Pais M.L. Quantification and immunophenotypic characterization of bone marrow and umbilical cord blood mesenchymal stem cells by multicolor flow cytometry. Transplant Proc. 2009;41(3):943-946. doi: 10.1016/j.transproceed.2009.01.059.
- Berner A., Siebenlist S., Reichert J.C., Hendrich C., Nöth U. Reconstruction of osteochondral defects with a stem cell-based cartilage-polymer construct in a small animal model. Z Orthop Unfall. 2010;148(1):31-38. (In German). doi: 10.1055/s-0029-1240753.
- Zhao J., Xu J.J. Experimental study on application of polypropylene hernia of fat stem cells in rats. Eur Rev Med Pharmacol Sci. 2018;22(18):6156-6161. doi: 10.26355/eurrev_201809_15957.
- Blazquez R., Sanchez-Margallo F.M., de la Rosa O., Dalemans W., Alvarez V., Tarazona R. et al. Immunomodulatory potential of human adipose mesenchymal stem cells derived exosomes on in vitro stimulated T cells. Front Immunol. 2014;5:556. doi: 10.3389/fimmu.2014.00556.
- Oshchepkova A., Neumestova A., Matveeva V., Artemyeva L., Morozova K., Kiseleva E. et al. Cytochalasin-B-inducible nanovesicle mimics of natural extracellular vesicles that are capable of nucleic acid transfer. Micromachines (Basel). 2019;10(11):750. doi: 10.3390/mi10110750.
- Lin Y., Zhang F., Lian X.F., Peng W.Q., Yin C.Y. Mesenchymal stem cell-derived exosomes improve diabetes mellitus-induced myocardial injury and fibrosis via inhibition of TGF-β1/Smad2 signaling pathway. Cell Mol Biol (Noisy-le-grand). 2019;65(7):123-126.
- Liang P., Ye F., Hou C.C., Pi L., Chen F. Mesenchymal stem cell therapy for patients with ischemic heart failure – past, present, and future. Curr Stem Cell Res Ther. 2021;16(5):608-621. doi: 10.2174/1574888X15666200309144906.
- Sadallah S., Eken C., Schifferli J.A. Ectosomes as modulators of inflammation and immunity. Clin Exp Immunol. 2011;163(1):26-32. doi: 10.1111/j.1365-2249.2010.04271.x.
- Silachev D.N., Goryunov K.V., Shpilyuk M.A., Beznoschenko O.S., Morozova N.Y., Kraevaya E.E. et al. Effect of MSCs and MSC-derived extracellular vesicles on human blood coagulation. Cells. 2019;8(3):258. doi: 10.3390/cells8030258.
- Tang X.D., Shi L., Monsel A., Li X.Y., Zhu H.L., Zhu Y.G. et al. Mesenchymal stem cell microvesicles attenuate acute lung injury in mice partly mediated by Ang-1 mRNA. Stem Cells. 2017;35(7):1849-1859. doi: 10.1002/stem.2619.
- Haga H., Yan I.K., Borrelli D.A., Matsuda A., Parasramka M., Shukla N. et al. Extracellular vesicles from bone marrow-derived mesenchymal stem cells protect against murine hepatic ischemia/reperfusion injury. Liver Transpl. 2017;23(6):791-803. doi: 10.1002/lt.24770.
- Toh W.S., Lai R.C., Hui J.H.P., Lim S.K. MSC exosome as a cell-free MSC therapy for cartilage regeneration: Implications for osteoarthritis treatment. Semin. Cell Dev Biol. 2017;67:56-64. doi: 10.1016/j.semcdb.2016.11.008.
Supplementary files
