Indices of systemic inflammation for predicting early infections after major joint arthroplasty
- 作者: Lyubimova L.V.1, Mikishanina E.A.1,2, Nikolaev N.S.1,2, Lyubimov E.A.1, Preobrazhenskaya E.V.1
-
隶属关系:
- Federal Center of Traumatology, Orthopedics and Arthroplasty (Cheboksary)
- I.N. Ulyanov Chuvash State University
- 期: 卷 31, 编号 4 (2025)
- 页面: 41-52
- 栏目: Clinical studies
- URL: https://journal-vniispk.ru/2311-2905/article/view/357892
- DOI: https://doi.org/10.17816/2311-2905-17754
- ID: 357892
如何引用文章
详细
Background. Infectious complications after arthroplasty pose a serious problem for both the patient and the health facility. Therefore, their prognosis is of great clinical importance.
The aim of the study — to determine the feasibility of using systemic inflammation indices (SII, SIRI, AISI) to predict the development of early periprosthetic joint infection at the stage of planning major joint arthroplasty.
Methods. A single-center retrospective non-randomized comparative study of cases of primary hip or knee arthroplasty (n = 6036) was conducted: Group 1 — patients without subsequent development of infection at a period of ≤ 4 weeks after surgery (n = 5843); Group 2 — with subsequent development of periprosthetic joint infection (n = 193). Threshold values of quantitative indicators (BMI, age, inflammation indices SII, SIRI, and AISI) were calculated. The contribution of variables (including categorical ones such as sex and joint) to the risk of developing early infection was determined using AI-driven machine learning based on multivariate logistic regression.
Results. The study groups were comparable in terms of sex, BMI, and operated joints, but differed in terms of age (p = 0.0067). The values of SIRI, SII, and AISI were statistically significantly higher in Group 2. SII (with a logistic regression coefficient of 0.2108) was the most significant factor in predicting the development of infection. The obtained SII and SIRI threshold values were 498.9 and 0.8 (respectively), with an AUC of 0.55 (95% CI: 0.54-0.56). The constructed model for predicting the risk of early infection after arthroplasty based on multivariate logistic regression showed an average accuracy level of AUC = 0.62 (95% CI: 0.30-0.72), indicating a low risk of infection with a coefficient between 0.30 and 0.50, and a high risk with a coefficient between 0.51 and 0.72.
Conclusion. The use of systemic inflammation indices (SII, SIRI, AISI) in a mathematical model for predicting early periprosthetic infection can help in taking necessary measures for preoperative preparation of the patient before primary arthroplasty to reduce the incidence of this infectious complication.
作者简介
Lyudmila Lyubimova
Federal Center of Traumatology, Orthopedics and Arthroplasty (Cheboksary)
编辑信件的主要联系方式.
Email: borisova-80@mail.ru
ORCID iD: 0000-0002-5750-4459
SPIN 代码: 5462-6973
俄罗斯联邦, Cheboksary
Evgeniya Mikishanina
Federal Center of Traumatology, Orthopedics and Arthroplasty (Cheboksary); I.N. Ulyanov Chuvash State University
Email: evaeva_84@mail.ru
ORCID iD: 0000-0003-4408-1888
SPIN 代码: 3727-5392
Cand. Sci. (Phys.-Math.)
俄罗斯联邦, Cheboksary; CheboksaryNikolay Nikolaev
Federal Center of Traumatology, Orthopedics and Arthroplasty (Cheboksary); I.N. Ulyanov Chuvash State University
Email: nikolaevns@mail.ru
ORCID iD: 0000-0002-1560-470X
SPIN 代码: 8723-9840
Dr. Sci. (Med.), Professor
俄罗斯联邦, Cheboksary; CheboksaryEvgeniy Lyubimov
Federal Center of Traumatology, Orthopedics and Arthroplasty (Cheboksary)
Email: elyubimov@mail.ru
ORCID iD: 0000-0001-5262-0197
SPIN 代码: 7759-8083
俄罗斯联邦, Cheboksary
Elena Preobrazhenskaya
Federal Center of Traumatology, Orthopedics and Arthroplasty (Cheboksary)
Email: alenka_22@bk.ru
ORCID iD: 0000-0003-3556-145X
SPIN 代码: 1525-3912
俄罗斯联邦, Cheboksary
参考
- Божкова С.А., Тихилов Р.М., Артюх В.А. Перипротезная инфекция суставов как социально-экономическая проблема современной ортопедии. Вестник Российской академии медицинских наук. 2023;78(6):601-608. doi: 10.15690/vramn8370. Bozhkova S.A., Tikhilov R.M., Artyukh V.A. Periprosthetic Joint Infection as a Socio-Economic Problem of Modern Orthopedics. Annals of the Russian Academy of Medical Sciences. 2023;78(6):601-608. (In Russian). doi: 10.15690/vramn8370.
- Pricop M., Ancusa O., Talpos S., Urechescu H., Bumbu B.A. The Predictive Value of Systemic Immune-Inflammation Index and Symptom Severity Score for Sepsis and Systemic Inflammatory Response Syndrome in Odontogenic Infections. J Pers Med. 2022;12(12):2026. doi: 10.3390/jpm12122026.
- Vitiello R., Smimmo A., Matteini E., Micheli G., Fantoni M., Ziranu A. et al. Systemic Inflammation Response Index (SIRI) and Monocyte-to-Lymphocyte Ratio (MLR) Are Predictors of Good Outcomes in Surgical Treatment of Periprosthetic Joint Infections of Lower Limbs: A Single-Center Retrospective Analysis. Healthcare (Basel). 2024;12(9):867. doi: 10.3390/healthcare12090867.
- Moldovan F. Role of Serum Biomarkers in Differentiating Periprosthetic Joint Infections from Aseptic Failures after Total Hip Arthroplasties. J Clin Med. 2024; 13(19):5716. doi: 10.3390/jcm13195716.
- Tarle M., Raguž M., Lukšić I. A Comparative Study of the Aggregate Index of Systemic Inflammation (AISI) and C-Reactive Protein (CRP) in Predicting Odontogenic Abscesses Severity: A Novel Approach to Assessing Immunoinflammatory Response. Diagnostics (Basel). 2024;14(19):2163. doi: 10.3390/diagnostics14192163.
- Moldovan F. Correlation between Peripheric Blood Markers and Surgical Invasiveness during Humeral Shaft Fracture Osteosynthesis in Young and Middle-Aged Patients. Diagnostics (Basel). 2024;14(11):1112. doi: 10.3390/diagnostics14111112.
- Moldovan F. Sterile Inflammatory Response and Surgery-Related Trauma in Elderly Patients with Subtrochan-teric Fractures. Biomedicines. 2024;12(2):354. doi: 10.3390/biomedicines12020354.
- Hauer G., Rasic L., Klim S., Leitner L., Leithner A., Sadoghi P. Septic complications are on the rise and aseptic loosening has decreased in total joint arthroplasty: an updated complication based analysis using worldwide arthroplasty registers. Arch Orthop Trauma Surg. 2024;144(12):5199-5204. doi: 10.1007/s00402-024-05379-2.
- Lespasio M., Mont M., Guarino A. Identifying risk factors associated with postoperative infection following elective lower-extremity total joint arthroplasty. Perm J. 2020;24:1-3. doi: 10.7812/TPP/20.013.
- Ren X., Ling L., Qi L., Liu Z., Zhang W., Yang Z. et al. Patients’ risk factors for periprosthetic joint infection in primary total hip arthroplasty: a meta-analysis of 40 studies. BMC Musculoskelet Disord. 2021;22(1):776. doi: 10.1186/s12891-021-04647-1.
- Resende V.A.C., Neto A.C., Nunes C., Andrade R., Espregueira-Mendes J., Lopes S. Higher age, female gender, osteoarthritis and blood transfusion protect against periprosthetic joint infection in total hip or knee arthroplasties: a systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2021;29(1):8-43. doi: 10.1007/s00167-018-5231-9.
- Мясоедов А.А., Торопов С.С., Березин Г.В., Карелкин В.В., Тотоев З.А., Шубняков И.И. и др. Факторы риска развития перипротезной инфекции после первичного эндопротезирования тазобедренного сустава. Травматология и ортопедия России. 2020;26(1):40-47. doi: 10.21823/2311-2905-2020-26-1-40-47. Myasoedov A.A., Toropov S.S., Berezin G.V., Karelkin V.V., Totoev Z.A., Shubnyakov I.I. et al. Risk Factors for Prosthetic Joint Infection after Primary Hip Arthroplasty. Traumatology and Orthopedics of Russia. 2020;26(1):40-47. (In Russian). doi: 10.21823/2311-2905-2020-26-1-40-47.
- Edelstein A.I., Kwasny M.J., Suleiman L.I., Khakhkhar R.H., Moore M.A., Beal M.D. et al. Can the American college of surgeons risk calculator predict 30-day complications after knee and hip arthroplasty? J Arthroplasty. 2015;30(9 Suppl):5-10. doi: 10.1016/j.arth.2015.01.057.
- Wingert N.C., Gotoff J., Parrilla E., Gotoff R., Hou L., Ghanem E. The ACS NSQIP risk calculator is a fair predictor of acute periprosthetic joint infection. Clin Orthop Relat Res. 2016;474(7):1643-1648. doi: 10.1007/s11999-016-4717-3.
- Вороков А.А., Фадеев Е.М., Спичко А.А., Алиев Б.Г., Мурзин Е.А., Хайдаров В.М. и др. Возможности прогноза местных инфекционных осложнений при артропластике тазобедренного и коленного суставов. Медико-фармацев-тический журнал «Пульс». 2020;22(12):106-111. doi: 10.26787/nydha-2686-6838-2020-22-12-106-111. Vorokov A.A., Fadeev E.M., Spichko A.A., Aliev B.G., Murzin E.A., Khaidarov V.M. et al. Possibilities of forecasting surgical site infection after hip and knee replacement. Medical & Pharmaceutical Journal “Pulse”. 2020;22(12):106-111. (In Russian). doi: 10.26787/nydha-2686-6838-2020-22-12-106-111.
- Toossi N., Adeli B., Rasouli M.R., Huang R., Parvizi J. Serum white blood cell count and differential do not have a role in the diagnosis of periprosthetic joint infection. J Arthroplasty. 2012;27(8 Suppl):51-54.e1. doi: 10.1016/j.arth.2012.03.021.
- Thachil J., Bates I. Approach to the Diagnosis and Classification of Blood Cell Disorders. In: Bain B.J., Bates I., Laffan M.A. (eds.) Dacie and Lewis Practical Haematology. 12th ed. Elsevier; 2017. p. 497-510. doi: 10.1016/B978-0-7020-6696-2.00023-0.
- Zareifar S., Farahmand Far M.R., Golfeshan F., Cohan N. Changes in platelet count and mean platelet volume during infectious and inflammatory disease and their correlation with ESR and CRP. J Clin Lab Anal. 2014;28(3):245-248. doi: 10.1002/jcla.21673.
- Shi C., Pamer E.G. Monocyte recruitment during infection and inflammation. Nat Rev Immunol. 2011;11(11):762-774. doi: 10.1038/nri3070.
- Drewry A.M., Samra N., Skrupky L.P., Fuller B.M., Compton S.M., Hotchkiss R.S. Persistent lymphopenia after diagnosis of sepsis predicts mortality. Shock. 2014;42(5):383-391. doi: 10.1097/SHK.0000000000000234.
- Hu B., Yang X.R., Xu Y., Sun Y.F., Sun C., Guo W. et al. Systemic Immune-Inflammation Index Predicts Prognosis of Patients after Curative Resection for Hepatocellular Carcinoma. Clin Cancer Res. 2014;20(23):6212-6222. doi: 10.1158/1078-0432.CCR-14-0442.
- Li C., Tian W., Zhao F., Li M., Ye Q., Wei Y. et al. Systemic immune-inflammation index, SII, for prognosis of elderly patients with newly diagnosed tumors. Oncotarget. 2018;9(82):35293-35299. doi: 10.18632/oncotarget.24293.
- Mikhak Z., Agace W.W., Luster A.D. Lymphocyte Trafficking to Mucosal Tissues. In: Mestecky J., Strober W., Russell M.W., Cheroutre H., Lambrecht B.N., Kelsall B.L. (eds.) Mucosal Immunology. 4th ed. Academic Press; 2015. p. 805-830. doi: 10.1016/B978-0-12-415847-4.00040-9.
- Егиазарян К.А., Ершов Д.С., Лыско А.М., Юдаев Н.Д. Индекс CAR как предиктор поздних осложнений у пациентов с политравмой и другими патологиями. Политравма. 2024;4:85-91. doi: 10.24412/1819-1495-2024-4-85-91. Egiazaryan K.A., Ershov D.S., Lysko A.M., Yudaev N.D. CAR index as a predictor of late complications in patients with polytrauma and other pathologies. Polytrauma. 2024;4:85-91. (In Russian). doi: 10.24412/1819-1495-2024-4-85-91.
补充文件




