Subsidence of vertebral body replacement prostheses in spinal tumors: a systematic review
- 作者: Zaborovskii N.S.1,2, Shailieva S.L.1, Masevnin S.V.1, Smekalenkov O.A.1, Murakhovsky V.S.1, Ptashnikov D.A.3
-
隶属关系:
- Vreden National Medical Research Center of Traumatology and Orthopedics
- St. Petersburg State University
- St. Petersburg Clinical Hospital of the Russian Academy of Sciences
- 期: 卷 31, 编号 4 (2025)
- 页面: 179-188
- 栏目: Reviews
- URL: https://journal-vniispk.ru/2311-2905/article/view/357906
- DOI: https://doi.org/10.17816/2311-2905-17750
- ID: 357906
如何引用文章
详细
Background. Vertebral body replacement is one of the key surgical methods for the treatment of spinal tumors. One of its most common complications is vertebral body implant subsidence.
The aim of the review — to compare the subsidence rates of various types of vertebral body implants used in the surgical treatment of thoracic and lumbar spinal tumors in order to determine the optimal reconstruction methods for patients with spinal tumors.
Methods. A systematic literature review was conducted in accordance with the PRISMA guidelines. The search was performed in the PubMed, Google Scholar, and eLIBRARY databases. Studies were included if they involved vertebral body replacement in patients aged 18 years and older with oncologic lesions, provided a clear definition of subsidence, and analyzed risk factors. Various implant types were evaluated, including expandable, mesh, 3D-printed commercial, and patient-specific prostheses.
Results. Thirteen studies were included in the analysis (12 retrospective and 1 prospective) comprising a total of 661 patients. The highest subsidence rates were observed with titanium mesh cages, ranging from 63.8 to 71.4%. Expandable implants demonstrated more favorable outcomes, with subsidence rates from 5.3 to 35.3%. The results for 3D-printed implants were the most inconsistent, ranging from 0 to 100% across studies. The follow-up period varied from 7.4 to 101 months.
Conclusions. Expandable implants demonstrate the most favorable subsidence rates in vertebral body replacement for patients with spinal tumors. The high subsidence rates of titanium mesh cages may be attributed to a mismatch between the elastic modulus of the implant and bone tissue. 3D-printed implants require further investigation to optimize their design and clinical use. An individualized approach to prosthesis selection considering risk factors is essential.
作者简介
Nikita Zaborovskii
Vreden National Medical Research Center of Traumatology and Orthopedics; St. Petersburg State University
编辑信件的主要联系方式.
Email: n.zaborovskii@yandex.ru
ORCID iD: 0000-0003-4562-8160
SPIN 代码: 3766-5993
Cand. Sci. (Med.)
俄罗斯联邦, St. Petersburg; St. PetersburgSheridan Shailieva
Vreden National Medical Research Center of Traumatology and Orthopedics
Email: sheri21072001@gmail.com
ORCID iD: 0009-0005-2113-3077
SPIN 代码: 8199-7620
俄罗斯联邦, St. Petersburg
Sergei Masevnin
Vreden National Medical Research Center of Traumatology and Orthopedics
Email: drmasevnin@gmail.com
ORCID iD: 0000-0002-9853-7089
SPIN 代码: 5505-2641
Cand. Sci. (Med.)
俄罗斯联邦, St. PetersburgOleg Smekalenkov
Vreden National Medical Research Center of Traumatology and Orthopedics
Email: drsmekalenkov@mail.ru
ORCID iD: 0000-0002-4867-0332
SPIN 代码: 7902-6380
Cand. Sci. (Med.)
俄罗斯联邦, St. PetersburgVladislav Murakhovsky
Vreden National Medical Research Center of Traumatology and Orthopedics
Email: drmurakhovsky@gmail.com
ORCID iD: 0000-0002-9985-5636
SPIN 代码: 3819-8485
俄罗斯联邦, St. Petersburg
Dmitrii Ptashnikov
St. Petersburg Clinical Hospital of the Russian Academy of Sciences
Email: drptashnikov@yandex.ru
ORCID iD: 0000-0001-5765-3158
SPIN 代码: 7678-6542
Dr. Sci. (Med.), Professor
俄罗斯联邦, St. Petersburg参考
- Усиков ВД, Пташников ДА, Магомедов ШШ (2010) Корпор- и спондилэктомия в системе хирургического лечения опухолей позвоночника. Травматология и Ортопедия России 140–142
- Пташников ДА, Усиков В Д., Магомедов ШШ, et al (2008) Тактика хирургического лечения больных с опухолями позвоночника в сочетании с лучевой и лекарственной терапией. Травматология и Ортопедия России 106–107
- Заборовский НС, Масевнин СВ, Мураховский ВС, et al (2025) Факторы риска нестабильности имплантатов после спондилэктомии у пациентов с опухолями позвоночника. Гений ортопедии 31:183–193. https://doi.org/10.18019/1028-4427-2025-31-2-183-193
- Berjano P, Cecchinato R, Pun A, Boriani S (2020) Revision surgery for tumors of the thoracic and lumbar spine: causes, prevention, and treatment strategy. Eur Spine J 29:66–77. https://doi.org/10.1007/s00586-019-06276-8
- Zaborovskii N, Schlauch A, Ptashnikov D, et al (2022) Hardware Failure in Spinal Tumor Surgery: A Hallmark of Longer Survival? Neurospine 19:84–95. https://doi.org/10.14245/ns.2143180.590
- Kasapovic A, Bornemann R, Pflugmacher R, Rommelspacher Y (2021) Implants for Vertebral Body Replacement - Which Systems are Available and Have Become Established. Z Orthop Unfall 159:83–90. https://doi.org/10.1055/a-1017-3968
- Viswanathan A, Abd-El-Barr MM, Doppenberg E, et al (2012) Initial experience with the use of an expandable titanium cage as a vertebral body replacement in patients with tumors of the spinal column: a report of 95 patients. Eur Spine J 21:84–92. https://doi.org/10.1007/s00586-011-1882-7
- Yoshioka K, Murakami H, Demura S, et al (2017) Risk factors of instrumentation failure after multilevel total en bloc spondylectomy. Spine Surg Relat Res 1:31–39. https://doi.org/10.22603/ssrr.1.2016-0005
- Girolami M, Boriani S, Bandiera S, et al (2018) Biomimetic 3D-printed custom-made prosthesis for anterior column reconstruction in the thoracolumbar spine: a tailored option following en bloc resection for spinal tumors. Eur Spine J 27:3073–3083. https://doi.org/10.1007/s00586-018-5708-8
- Li Z, Wei F, Liu Z, et al (2020) Risk Factors for Instrumentation Failure After Total En Bloc Spondylectomy of Thoracic and Lumbar Spine Tumors Using Titanium Mesh Cage for Anterior Reconstruction. World Neurosurgery 135:e106–e115. https://doi.org/10.1016/j.wneu.2019.11.057
- Tang X, Yang Y, Zang J, et al (2021) Preliminary Results of a 3D-Printed Modular Vertebral Prosthesis for Anterior Column Reconstruction after Multilevel Thoracolumbar Total En Bloc Spondylectomy. Orthopaedic Surgery 13:949–957. https://doi.org/10.1111/os.12975
- Shen FH, Gasbarrini A, Lui DF, et al (2022) Integrated Custom Composite Polyetheretherketone/Carbon fiber (PEEK/CF) Vertebral Body Replacement (VBR) in the Treatment of Bone Tumors of the Spine: A Preliminary Report From a Multicenter Study. Spine 47:252. https://doi.org/10.1097/BRS.0000000000004177
- Zhou H, Liu S, Li Z, et al (2022) 3D-printed vertebral body for anterior spinal reconstruction in patients with thoracolumbar spinal tumors. Journal of Neurosurgery: Spine 37:274–282. https://doi.org/10.3171/2022.1.SPINE21900
- Cao Y, Yang N, Wang S, et al (2023) The application of 3D-printed auto-stable artificial vertebral body in en bloc resection and reconstruction of thoracolumbar metastases. J Orthop Surg Res 18:638. https://doi.org/10.1186/s13018-023-04135-3
- Chen Z, Lü G, Wang X, et al (2023) Is 3D-printed prosthesis stable and economic enough for anterior spinal column reconstruction after spinal tumor resection? A retrospective comparative study between 3D-printed off-the-shelf prosthesis and titanium mesh cage. Eur Spine J 32:261–270. https://doi.org/10.1007/s00586-022-07480-9
- Shimizu T, Kato S, Demura S, et al (2023) Characteristics and risk factors of instrumentation failure following total en bloc spondylectomy. Bone Joint J 105-B:172–179. https://doi.org/10.1302/0301-620X.105B2.BJJ-2022-0761.R2
- Hu J, Song G, Chen H, et al (2023) Surgical outcomes and risk factors for surgical complications after en bloc resection following reconstruction with 3D-printed artificial vertebral body for thoracolumbar tumors. World J Surg Oncol 21:385. https://doi.org/10.1186/s12957-023-03271-8
- Hu X, Barber SM, Ji Y, et al (2023) Implant failure and revision strategies after total spondylectomy for spinal tumors. Journal of Bone Oncology 42:100497. https://doi.org/10.1016/j.jbo.2023.100497
- Schwendner M, Ille S, Kirschke JS, et al (2023) Clinical evaluation of vertebral body replacement of carbon fiber–reinforced polyetheretherketone in patients with tumor manifestation of the thoracic and lumbar spine. Acta Neurochir. https://doi.org/10.1007/s00701-023-05502-z
- Li Z, Guo L, Zhang P, et al (2022) A Systematic Review of Perioperative Complications in en Bloc Resection for Spinal Tumors. Global Spine Journal. https://doi.org/10.1177/21925682221120644
- Xu H, Wang X, Han Y, et al (2022) Biomechanical comparison of different prosthetic reconstructions in total en bloc spondylectomy: a finite element study. BMC Musculoskeletal Disorders 23:955. https://doi.org/10.1186/s12891-022-05919-0
- Heary RF, Parvathreddy N, Sampath S, Agarwal N (2017) Elastic modulus in the selection of interbody implants. Journal of Spine Surgery 3:163–167. https://doi.org/10.21037/jss.2017.05.01
- Warburton A, Girdler SJ, Mikhail CM, et al (2020) Biomaterials in Spinal Implants: A Review. Neurospine 17:101–110. https://doi.org/10.14245/ns.1938296.148
- Frost HM (2004) A 2003 update of bone physiology and Wolff’s Law for clinicians. Angle Orthod 74:3–15. https://doi.org/10.1043/0003-3219(2004)074<0003:AUOBPA>2.0.CO;2
补充文件


