World experience in the application of low-energy electron irradiation in agriculture

Cover Page

Cite item

Full Text

Abstract

According to the long-term observations of the FAO, losses of plant-based agricultural products are estimated to be between 10 and 30 %. The main causes of these losses are plant pathogens, spoilage microorganisms, and insect pests. The study discusses the problems of ensuring phytosanitary safety of agricultural products and proposes the use of radiation technology instead of chemical treatment. Radiation technology has a long history of research and application, spanning over 75 years. The most extensive and detailed data on the application of this technology have been obtained for gamma installations, which use natural radioactive isotopes. Lowenergy (less than 300 keV) electron accelerators were invented relatively recently, so the question of their use in agriculture is relevant. Treatment with low-energy electron radiation combines all the advantages of radiation treatment of food and agricultural products with gamma radiation, and at the same time, significantly reduces the risk of damage to biological structures inside the irradiated object due to the low penetrating power of the radiation. This study notes that low-energy electron accelerators can be successfully used to combat plant infectious diseases, reducing the amount of plant pathogens on seeds, without affecting their growth parameters. The use of low-energy electron irradiation to prevent microbiological spoilage is also discussed. The nutritional qualities of irradiated products are not significantly altered. The method of radiation disinfestation (control of insect pests) using low-energy electron radiation has also proven to be effective. However, it should be noted that additional research is necessary to determine the optimal doses of low-energy radiation for each type of product and to ensure safety for human health and the environment. Generally, the use of radiation technology in agriculture has great potential and can become an effective means of improving productivity and food safety. This method of food processing has been recognized as safe for human health by several authoritative international organizations, including the UN (FAO), WHO, IAEA, and others.

About the authors

Oksana V. Tkhorik

Russian Institute of Radiology and Agroecology of National Research Centre «Kurchatov Institute»

Email: oxana.tkhorik@gmail.com
ORCID iD: 0000-0001-5213-2150

Researcher

1/1 Kievskoe shosse, Obninsk, Kaluga region, 249035, Russian Federation

Vladimir A. Kharlamov

Russian Institute of Radiology and Agroecology of National Research Centre «Kurchatov Institute»

Author for correspondence.
Email: kharlamof@gmail.com
ORCID iD: 0000-0003-3479-1800

Candidate of Biological Sciences, Senior Researcher

1/1 Kievskoe shosse, Obninsk, Kaluga region, 249035, Russian Federation

Irina V. Polyakova

Russian Institute of Radiology and Agroecology of National Research Centre «Kurchatov Institute»

Email: irinaamchenkina@mail.ru
ORCID iD: 0000-0003-1602-7921

Researcher

1/1 Kievskoe shosse, Obninsk, Kaluga region, 249035, Russian Federation

Nadezhda N. Loy

Russian Institute of Radiology and Agroecology of National Research Centre «Kurchatov Institute»

Email: loy.nad@yandex.ru
ORCID iD: 0000-0001-9984-0883

Candidate of Biological Sciences, Leading Researcher

1/1 Kievskoe shosse, Obninsk, Kaluga region, 249035, Russian Federation

Maria G. Pomyasova

Russian Institute of Radiology and Agroecology of National Research Centre «Kurchatov Institute»

Email: mariya-zelenetskaya@mail.ru
ORCID iD: 0000-0003-3922-1567

Researcher

1/1 Kievskoe shosse, Obninsk, Kaluga region, 249035, Russian Federation

Valentin I. Shishko

Russian Institute of Radiology and Agroecology of National Research Centre «Kurchatov Institute»

Email: valentine585@yandex.ru
ORCID iD: 0000-0002-0526-0579

Researcher

1/1 Kievskoe shosse, Obninsk, Kaluga region, 249035, Russian Federation

References

  1. Muller G, Lietz P, Munch HD. Mikrobiologiya pishchevykh produktov rastitel’nogo proiskhozhdeniya [Microbiology of plant foods]. Moscow; 1977. (In Russ.).
  2. Smirnova TA, Kostrova EI. Mikrobiologiya zerna i produktov ego pererabotki [Microbiology of grain and products of its processing]. Moscow: Agropromizdat publ.; 1989. (In Russ.).
  3. Pinstrup-A nderson P, Pandy-Lorch R, Rosegrant MW. The world food situation: recent developments, emerging issues, and long-term prospects. Vision 2020: Food Policy Report. Washington, DC: International Food Policy Research Institute; 1997.
  4. Tilman D, Fargione J, Wolff B, D’Antonio C, Dobson A, Howarth R, et al. Forecasting agriculturally driven global environmental change. Science. 2001;292(5515):281-284. doi: 10.1126/science.1057544
  5. Makarova MA, Shevtsova AA. Prospects of application of new means of protection against diseases in maize seed crops. Far East agrarian herald. 2017;(3):55-60. (In Russ.).
  6. Morrison RM. An economic analysis of electron accelerators and cobalt-60 for irradiating food. Technical Bulletin No. 1762. Washington, DC; 1989.
  7. Pikaev AK. Current state of radiation processing. Russian Chemical Reviews. 1995;64(6):609-640. (In Russ.).
  8. Chernyaev AP, Varzar SM. Particle accelerators in modern world. Yadernaya fizika. 2014;77(10):1266-1278. (In Russ.). doi: 10.7868/S0044002714100031
  9. Kozmin GV, Geraskin SA, Sanzharova NI. Radiatsionnyye tekhnologii v sel’skom khozyaystve i pishchevoy promyshlennosti [Radiation technologies in agriculture and food industry]. Obninsk; 2015. (In Russ.).
  10. Bezuglov VV, Bryazgin AA, Vlasov AY, Voronin LA, Panfilov AD, Radchenko VM, et al. Industrial electron accelerators ILU for medical products sterilization and food treatment. Physics of elementary particles and atomic nuclei, letters. 2016;13(7):1581-1585. (In Russ.).
  11. Bryazgin AA, Bezuglov VV, Voronin LA, Korobeynikov MV, Maximov SA, Nekhaev VE, et al. Industrial electron accelerators type ILU for food products treatment. In: Radiation technologies in agriculture and food industry: Current state and prospects: conference proceedings. Obninsk; 2018. p.127-131. (In Russ.).
  12. Sanzharova NI, Kozmin GV, Bondarenko VS. Nuclear technologies in agriculture: Science and technology development strategy. Innovatics and Expert Examination. 2016;(1):197-206. (In Russ.).
  13. Pimemov EP, Pavlov AN, Vasileva NA, Morozova AI. The effects of different regimes of a pulsed linear electron accelerator on the microorganisms that contaminate spices. In: Radiation technologies in agriculture and food industry: Current state and prospects: conference proceedings. Obninsk; 2018, p.100-103. (In Russ.).
  14. Zabayev VN. Primenenie uskoritelei v nauke i promyshlennosti [Application of accelerators in science and industry]. Tomsk; 2008. (In Russ.).
  15. Chernyaev АP. Uskoriteli v sovremennom mire [Accelerators in the world today]. Moscow; 2012. (In Russ.).
  16. Alimov AS. Prakticheskoe primenenie elektronnykh uskoriteley [Practical applications of electronic accelerators]. Preprint MSU SINP № 2011-13/877. (In Russ.).
  17. Scharf W, Wieszczycka W. Particle accelerators for industrial processing (Part 1). Maintenance and Reliability. 2001;(2-3):10-25.
  18. Hayashi T. Decontamination of dry food ingredients and seeds with «soft-electrons» (low-energy electrons). Food Sci Technol Int Tokyo. 1998;4(2):114-120. doi: 10.3136/fsti9596t9798.4.114
  19. Hayashi T, Takahashi Y, Todoriki S. Sterilization of foods with low-energy electrons («soft-electrons»). Radiat Phys Chem. 1998;52(1-6):73-76. doi: 10.3136/fsti9596t9798.4.114
  20. Imamura T, Todoriki S, Sota N, Nakakita H, Ikenaga H, Hayashi T. Effect of ‘‘soft-electron’’ (low-energy electron) treatment on three stored- product insect pests. J Stored Prod Res. 2004;40(2):169-177. doi: 10.1016/S0022-474X(02)00095-4
  21. Kikuchi OK, Todoriki S, Saito M, Hayashi T. Efficacy of soft-electron (low-energy electron beam) for soybean decontamination in comparison with gamma-rays. J Food Sci. 2003;68(2):649-652. doi: 10.1111/ j.1365-2621.2003.tb05725.x
  22. Hayashi T, Todoriki S. Low energy electron irradiation of food for microbial control. In: Irradiation for Food Safety and Quality. Vienna; 2001. p.118-128.
  23. Mehnert R, Klenert P, Prager L. Low-energy electron accelerators for industrial radiation processing. Radiat Phys Chem. 1993;42(1-3):525-529. doi: 10.1016/0969-806X(93)90302-B
  24. Baba T, Kaneko H, Taniguchi S. Soft electron processor for surface sterilization of food material. Radiat Phys Chem. 2004;71(1-2):209-211. doi: 10.1016/j.radphyschem.2004.03.079
  25. Imamura T, Miyanoshita A, Todoriki S, Hayashi T. Usability of a soft-electron (low-energy electron) machine for disinfestation of grains contaminated with insect pests. Radiat Phys Chem. 2004;71(1-2):213-215. doi: 10.1016/j.radphyschem.2004.03.080
  26. Imamura T, Todoriki S, Miyanoshita A, Horigane AK, Yoshida M, Hayashi T. Efficacy of soft-electron (lowenergy electron) treatment for disinfestation of brown rice containing different ages of the maize weevil, Sitophilus zeamais Motschulsky. Radiat Phys Chem. 2009;78(7-8):627-630. doi: 10.1016/j.radphyschem.2009.03.058
  27. Rami Reddy PV, Todoriki S, Miyanoshita A, Imamura T, Hayashi T. Effect of soft electron treatment on adzuki bean weevil, Callosobruchus chinensis (L.) (Col., Bruchidae). J Appl Entomol. 2006;130(6-7):393-399.
  28. Cutrubinis M, Delincee H, Stahl M, Roder O, Schaller HJ. Erste ergebnisse zum nachweis einerelektronenbehandlung von mais zur beizung bzw. entkeimung und entwesung. Gesunde Pflanzen. 2005;57(5):129-136. doi: 10.1007/s10343-005-0074-y
  29. Cutrubinis M, Delincee H, Stahl M, Roder O, Schaller HJ. Detection methods for cereal grains treated with low and high energy electrons. Radiat Phys Chem. 2005;72(5):639-644. doi: 10.1016/j.radphyschem.2004.03.089
  30. EVONTA - Service Gmb H. Available at: www.evonta.de (Accessed 07.11.2019).
  31. Hayashi T, Okadome H, Toyoshima H, Todoriki S, Ohtsubo K. Rheological properties and lipid oxidation of rice decontaminated with low-energy electrons. J. Food Prot. 1998;61(1):73-77. doi: 10.4315/0362-028X-61.1.73
  32. Todoriki S, Hayashi T. Disinfection of seeds and sprout inhibition of potatoes with low energy electrons. Radiat Phys Chem. 2000;57(3-6):253-255. doi: 10.1016/S0969-806X(99)00389-8
  33. Hayashi T, Takahashi Y, Todoriki S. Low-energy electron effects on the sterility and viscosity of grains. J Food Sci. 2006;62(4):858-860. doi: 10.1111/j.1365-2621.1997.tb15472.x
  34. Isemberlinova AA, Poloskov AV, Egorov IS, Kurilova AA, Nuzhnyh SA, Remnev GE. Influence of a pulsed electron beam on the sowing quality of wheat. Key Eng Mater. 2018;769:172-180. doi: 10.4028/www. scientific.net/KEM.769.172
  35. Loy NN, Sanzharova NI, Gulina SN, Suslova OV, Chizh TV, Vorobyov MS, et al. Evaluation of the effect of pre-sowing electron irradiation of barley seeds on plant development and disease incidence. J Phys Conf Ser. 2021;2064012101. doi: 10.1088/1742-6596/2064/1/012101
  36. Loy NN, Sanzharova NI, Gulina SN, Vorobiyov MS, Koval NN, Doroshkevich SY, et al. Influence of electronic irradiation on the affection of barley by root rot. J Phys Conf Ser. 2019;1393012107.
  37. Doroshkevich SY, Artyomov KP, Tereshchenko NN, Zyubanova TI, Vorobyov MS, Akimova EE, et al. Presowing treatment of spring wheat seeds by a pulsed electron beam in the atmosphere. High Energy Chemistry. 2021;55(4):326-332. (In Russ.). doi: 10.31857/S0023119321040069
  38. Loy NN, Sanzharova NI, Gulina SN, Suslova OV. Influence of electronic radiation on radio resistance of phytopathogenic microflora of cucumber. Rossiiskaia selskokhoziaistvennaia nauka. 2021;(4):47-50. (In Russ.). doi: 10.31857/S2500262721040104
  39. Loy NN, Sanzharova NI, Gulina SN, Vorobev MS. Influence of electronic radiation of seeds of grain crops on their resistance to damage of root rot. In: Nuclear and physical technologies in agriculture and food industry: conference proceedings. 2020. p.346-350. (In Russ.).
  40. Todoriki S, Kikuchi OK, Nakaoka M, Miike M, Hayashi T. Soft electron (low energy electron) processing of foods for microbial control. Radiat Phys Chem. 2002;63(3-6):349-351. doi: 10.1016/S0969-806X(01)00588-6
  41. Aisala H, Nygren H, Seppänen- Laakso T, Heiniö RL, Kießling M, Aganovic K, et al. Comparison of low energy and high energy electron beam treatments on sensory and chemical properties of seeds. Int Food Res J. 2021;148:110575. doi: 10.1016/j.foodres.2021.110575
  42. Markova YA, Alekseenko AL, Kramarskiy AV, Savilov ED. Plants as an element of environmental chain circulation of pathogenic for human bacteria. Siberian Medical Journal (Irkutsk). 2012;114(7):11-14. (In Russ.).
  43. Fan X, Sokorai K, Weidauer A, Gotzmann G, Rogner FH, Koch E. Comparison of gamma and electron beam irradiation in reducing populations of E. coli artificially inoculated on mung bean, clover and fenugreek seeds, and affecting germination and growth of seeds. Radiat Phys Chem. 2017;130:306-315. doi: 10.1016/j. radphyschem.2016.09.015

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».