DIGITAL SOIL MAPPING FOR SMART AGRICULTURE: THE SOLIM METHOD AND SOFTWARE PLATFORMS

Cover Page

Cite item

Full Text

Abstract

The key challenges faced by many of the existing digital soil mapping (DSM) techniques are the rigid requirements on the size of soil samples to extract the relationships needed and on the stationarity of the extracted relationships. These requirements limit the application of these DSM techniques. This paper provides an overview of the SoLIM approach and an introduction to the operation of SoLIM through the software platforms available. SoLIM is based on the Third Law of Geography, which calls for the comparison of similarity in geographic (environmental) configuration of a prototype and an unsampled location and then use this similarity to predict the value of a soil property at a given location. DSM under SoLIM approach removes requirements on the sample size and the stationarity assumption. In addition, the uncertainty computed based on the similarities can be used to improve the efficiency of error reduction efforts. The SoLIM approach has been implemented in two platforms: SoLIM Solutions and CyberSoLIM. The theoretical foundation and the availability of software platforms under SoLIM make DSM possible and convenient over large and complex geographic regions.

About the authors

A-Xing X Zhu

Nanjing Normal University; Institute of Geographic Sciences and Natural Resources Research; University of Wisconsin-Madison

Email: azhu@wisc.edu
Department of Geography, University of Wisconsin-Madison Nanjing, 210023, China; Beijing, 100101, China; Madison, Wisconsin, 53706, USA

Cheng-Zhi Z Qin

Institute of Geographic Sciences and Natural Resources Research

Email: azhu@wisc.edu
State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences Beijing, 100101, China

Peng Liang

Institute of Geographic Sciences and Natural Resources Research

Email: azhu@wisc.edu
State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences Beijing, 100101, China

Fei Du

University of Wisconsin-Madison

Email: azhu@wisc.edu
Department of Geography, University of Wisconsin-Madison. Madison, Wisconsin, 53706, USA

References

  1. McBratney AB, Santos MM, Minasny B. On digital soil mapping. Geoderma. 2003; 117(1-2): 3-52. Available from: doi: 10.1016/S0016-7061(03)00223-4.
  2. Zhu AX, Lu G, Liu J, Qin CZ, Zhou C. Spatial prediction based on Third Law of Geography Annals of GIS. 2018. Available from: doi: 10.1080/19475683.2018.1534890.
  3. Tobler WR. A computer movie simulating urban growth in the Detroit region, Economic geography. 1970; 46(sup1):234-240.
  4. Goodchild MF. The validity and usefulness of laws in geographic information science and geography. Annals of the Association of American Geographers. 2004; 94(2):300-303. Available from: doi: 10.1111/j.1467-8306.2004.09402008.x.
  5. Goovaerts P. Geostatistics for natural resources evaluation. New York: Oxford University Press; 1997.
  6. Fotheringham AS, Brunsdon C, Charlton ME. Geographically Weighted Regression - the Analysis of Spatially Varying Relationships. Chichester: John Willey & Sons; 2002.
  7. Zhu AX. A similarity model for representing soil spatial information. Geoderma. 1997; 77(2-4): 217-242. Available from: doi: 10.1016/S0016-7061(97)00023-2
  8. Zhu AX, Hudson B, Burt JE, Lubich K, Simonson D. Soil mapping using GIS, expert knowledge and fuzzy logic. Soil Science Society of America Journal. 2001;65(5):1463-1472. Available from: doi: 10.2136/sssaj2001.6551463x.
  9. Qi F, Zhu AX, Harrower M, Burt JE. Fuzzy soil mapping based on prototype category theory. Geoderma. 2006; 136(3-4):774-787. Available from: doi: 10.1016/j.geoderma.2006.06.001.
  10. Zhu AX, Band LE, Vertessy R, Dutton B. Derivation of soil properties using a Soil-Land Inference Model (SoLIM). Soil Science Society of America Journal. 1997; 61(2):523-533. Available from: doi: 10.2136/sssaj1997.03615995006100020022x
  11. Zhu AX, Qi F, Moore A, Burt JE. Prediction of soil properties using fuzzy membership. Geoderma. 2010; 158(3-4):199-206. Available from: doi: 10.1016/j.geoderma.2010.05.001.
  12. Zhu AX, Liu J, Du F, Zhang SJ, Qin CZ, Burt JE, Scholten T. Predictive soil mapping with limited sample data. European Journal of Soil Science. 2015; 66(3):535-547. Available from: doi: 10.1111/ejss.12244.
  13. Zhu AX. Measuring uncertainty in class assignment for natural resource maps using a similarity model. Photogrammetric Engineering and Remote Sensing. 1997; 63(10):1195-1202.
  14. Zhang SJ, Zhu AX, Liu J, Yang L, Qin CZ, An YM. An heuristic uncertainty directed field sampling design for digital soil mapping. Geoderma. 2016; 267:123-136. Available from: doi: 10.1016/j.geoderma.2015.12.009.
  15. Li Y, Zhu AX, Shi Z, Liu J, Du F. Supplemental sampling for digital soil mapping based on prediction uncertainty from both the feature domain and the spatial domain. Geoderma. 2016; 284:73-84. Available from: doi: 10.1016/j.geoderma.2016.08.013
  16. Zhu AX, Mackay DS. Effects of spatial detail of soil information on watershed modeling. Journal of Hydrology. 2001; 248(1-4):54-77. Available from: doi: 10.1016/S0022-1694(01)00390-0.
  17. Quinn T, Zhu AX, Burt JE. Effects of detail soil spatial information on watershed modeling across different model scales. International Journal of Applied Earth Observation and Geoinformation. 2005; 7(4):324-338. Available from: doi: 10.1016/j.jag.2005.06.009.
  18. Zhu AX. A personal construct-based knowledge acquisition process for natural resource mapping. International Journal of Geographic Information Science. 1999; 13(2):119-141. Available from: doi: 10.1080/136588199241382.
  19. Qi F, Zhu AX. Knowledge discovery from soil maps using inductive learning. International Journal of Geographical information Science. 2003; 17(8):771-795. Available from: doi: 10.1080/13658810310001596049.
  20. Cheng W, Zhu AX, Qin CZ, Qi F. Updating conventional soil maps by mining soil-environment relationships from individual soil polygons. To be published in Journal of Integrative Agriculture. [Preprint] 2018.
  21. Qin CZ, Zhu AX, Shi X, Li BL, Pei T, Zhou CH. The quantification of spatial gradation of slope positions. Geomorphology. 2009; 110(3-4):152-161. Available from: doi: 10.1016/j.geomorph.2009.04.003.
  22. Zhu AX, Liu F, Li BL, Pei T, Qin CZ, Liu GH, Wang YJ, Chen YN, Ma XW, Qi F, Zhou CH. Differentiation of soil conditions over low relief areas using feedback dynamic patterns. Soil Science Society of America Journal. 2010; 74(3):861-869. Available from: doi: 10.2136/sssaj2008.0411.
  23. Liu F, Geng X, Zhu AX, Fraser W, Waddell A. Soil texture mapping over low relief areas using land surface feedback dynamic patterns extracted from MODIS. Geoderma. 2012; 171:44-52. Available from: doi: 10.1016/j.geoderma.2011.05.007
  24. Guo S, Zhu AX, Meng L, Burt JE, Du F, Liu J, Zhang G. Unification of soil feedback patterns under different evaporation conditions to improve soil differentiation over flat area. International Journal of Applied Earth Observation and Geoinformation. 2016; 49:126-137. Available from: doi: 10.1016/j.jag.2016.02.002.
  25. Zeng C, Zhu AX, Liu F, Yang L, Rossiter DG, Liu J, Wang D. The impact of rainfall magnitude on the performance of digital soil mapping over low-relief areas using a land surface dynamic feedback method. Ecological Indicators. 2017; 72:297-309. Available from: doi: 10.1016/j.ecolind.2016.08.023.
  26. Jiang J, Zhu AX, Qin CZ, Zhu T, Liu J, Du F, Liu J, Zhang G, An Y. CyberSoLIM: a cyber platform for digital soil mapping. Geoderma. 2016; 263:234-243. Available from: doi: 10.1016/j.geoderma.2015.04.018.
  27. Zhu AX, An YM, Qin CZ, Yang L. Spatial footprint for digital soil mapping based on the Third Law of Geography. To be published in Annals of GIS. [Preprint] 2018.
  28. Liu J. Integration of samples from multiple sources for predictive mapping over large areas. [Dissertation] University of Wisconsin - Madison, Madison, WI, USA; 2017.
  29. Liu J, Zhu AX, Rossiter D, Du F, Burt JE. Reliability estimation of individual sample points in individual predictive soil mapping [Preprint] 2018.
  30. Du F. Knowledge Integration in Geospatial Predictive Mapping. [Dissertation] University of Wisconsin - Madison, Madison, WI, USA; 2017.
  31. Du F, Zhu AX, Liu J, Yang L. Predictive mapping with small field sample data using semi- supervised machine learning. To be published in Transactions in GIS. [Preprint] 2018.
  32. Wang DS, Liu JZ, Zhu AX, Wang S, Zeng C, Ma T. Automatic extraction and structuration of soil-environment relationship information from soil survey reports. To be published in Journal of Integrative Agriculture. [Preprint] 2018.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».