Модель мониторинга нефтяного загрязнения почвы и его прекращения

Обложка

Цитировать

Полный текст

Аннотация

Оценка влияния хозяйственной деятельности нефтедобывающего комплекса России на загрязнение земель способствует принятию эволюционных управленческих решений. В нефтяном комплексе промышленное загрязнение отрицательно сказывается на флоре и фауне, поэтому необходимо определить уровень воздействия, степень его опасности, место заражения. Нужен системный подход. При изучении экологической среды важно учитывать наличие рисковых ситуаций и стохастических необратимых изменений. Идентификация характера и типа загрязнения почвы нефтепродуктами должна проводиться с использованием высокотехнологичного инструментария, интеллектуальных процедур. Рассмотрены моделирование ситуации загрязнения почв, прогнозирование и идентификация нефтяных загрязнений, также подмодель оптимального прекращения мониторинга. Прекращение наблюдений за оптимизацией окружающей среды приведет к снижению затрат на наблюдение, поскольку мониторинг загрязненной нефтепродуктами окружающей среды является дорогостоящим и сложным технологическим механизмом, часто требующим спутниковых данных. Предлагаемый алгоритм моделирования и системного анализа основан на ситуационном моделировании. Эволюционное моделирование позволяет адаптировать процедуру (методологию) прогнозирования и оценки к факторам риска окружающей среды. Это повышает точность (формализация и доказательность) и полноту выводов, оперативность анализа ситуации, что влияет на управляемость риска как для нефтяного комплекса, так и для отдельного предприятия отрасли. Результаты работы могут быть использованы для разработки программных средств, в частности экспертных и прогнозных систем. Ситуационные модели необходимы, когда нефтяные компании решают многокритериальные и многофакторные задачи принятия решений.

Об авторах

Светлана Евгеньевна Германова

Российский университет дружбы народов

Автор, ответственный за переписку.
Email: germanova-se@rudn.ru
ORCID iD: 0000-0003-2601-6740

старший преподаватель департамента техносферной безопасности Аграрно-технологического института

Российская Федерация, 117198, Москва, ул. Миклухо-Маклая, д. 6

Татьяна Валерьевна Дрёмова

Российский университет дружбы народов

Email: dremova-tv@rudn.ru
ORCID iD: 0000-0002-5584-5321

старший преподаватель департамента техносферной безопасности Аграрно-технологического института

Российская Федерация, 117198, Москва, ул. Миклухо-Маклая, д. 6

Вадим Геннадьевич Плющиков

Российский университет дружбы народов

Email: pliushchikov-vg@rudn.ru
ORCID iD: 0000-0003-2057-4602

доктор сельскохозяйственных наук, профессор, директор департамента техносферной безопасности Аграрно-технологического института

Российская Федерация, 117198, Москва, ул. Миклухо-Маклая, д. 6

Список литературы

  1. Trofimov SY, Ammosova YM, Orlov DS. Influence of oil on soil cover and the problem of developing a regulatory framework for the influence of oil pollution on soils. Moscow University Soil Science Bulletin. 2000; (2):30—34. (In Russ).
  2. Kulikov OV. Technogenic oil pollution of soil and water. Burenie i neft’. 2002; (12):24—27. (In Russ).
  3. Deryabin AN, Unguryanu TN, Buzinov RV. Population health risk caused by exposure to chemicals in soils. Health Risk Analysis. 2019; (3):18—25. (In Russ). doi: 10.21668/health.risk/2019.3.02
  4. Germanova SE, Ryzhova TA, Kocheva MV, Fedorova TA, Petukhov NV. Situational modelling of oil pollution risks monitored by distributed monitoring. Amazonia Investiga. 2020;9(25):44—48. (In Russ).
  5. Vasiliev AV, Bykov DE, Pimenov AA. Ecological monitoring of pollution of the soils by oily waste. Izvestia of Samara Scientific Center of the Russian Academy of Sciences. 2015. 17(4):269—272. (In Russ).
  6. Kalitsev DM. The pollution model of the «responsibility» zone of the production infrastructure of an oil and gas industry. Sovremennye nauchnye issledovaniya i razrabotki. 2018; 2(11):290—292. (In Russ).
  7. Gluhova LV, Kaziev VM, Kazieva BV. System rules of financial control and management of innovative business processes of the enterprise. Vestnik Volzhskogo universiteta im. V.N. Tatishcheva. 2018; 2(1):125—133. (In Russ).
  8. Timofeev YM, Berezin IA, Virolainen JA., Makarova MV, Nikitenko AA. Analysis of mesoscale variability of carbon dioxide in the vicinity of Moscow megacity based on satellite data. Current problems in remote sensing of the Earth from space. 2019; 16(4):263—272. (In Russ). doi: 10.21046/2070-7401-2019-16-4-263-270
  9. Chen SH, Yu T. Big data in computational social sciences and humanities: an introduction. In: Chen SH. (ed.) Big Data in Computational Social Science and Humanities. Cham: Springer; 2018. p.1—25. doi: 10.1007/9783-319-95465-3_1
  10. Miheeva TI. Data Mining in geo-information technologies. Vestnik of Samara State Technical University. Technical Sciences Series. 2006; (41):96—99. (In Russ).
  11. Abramov NS, Makarov DA, Talalaev AA, Fralenko VP. Modern methods for intelligent processing of Earth remote sensing data. Program Systems: Theory and Applications. 2018; 9(4):417—442. (In Russ). doi: 10.25209/2079-3316-2018-9-4-417-442
  12. Fedotov DV, Belov ML, Matrosova OA, Gorodnichev VA, Kozintsev VI. Method of detecting oil contamination on water surface based on registration of fluorescent radiation in two narrow spectral ranges. Herald of the Bauman Moscow State Technical University. Series Instrument Engineering. 2010; (2):39—47. (In Russ).
  13. Belov ML, Shteingart AD, Matrosova OA, Gorodnichev VA. Laser fluorescent method for monitoring leaks from petrol pipes based on the neural network algorithm. Science and Education. 2014; (1):5—69. (In Russ). doi: 10.7463/0114.0676410
  14. Fedotov YV, Matrosova OA, Belov ML, Gorodnichev VA. Method of detection of oil pollution on the Earth’s surface based on fluorescence radiation recording within three narrow spectral bands. Atmospheric and oceanic optics. 2013; 26(3):208—212. (In Russ).
  15. Krapivin VF, Mkrtchyan FA. Effectiveness of monitoring systems of detection. Ecological systems and devices. 2002; (6):3—5. (In Russ).

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».