Comparative Analysis of Wind Farms Dynamic Coefficient of Unevenness in Various Energy Systems


Cite item

Full Text

Abstract

In the context of integrating wind farms into power systems, it is imperative to ensure a reliable power supply to consumers. Changes in the operating modes of wind power plants (WPPs) should be compensated for by the ability of the control range of conventional power plants to load or unload active power. Therefore, when increasing the installed capacity of WPPs in power systems, improving the manoeuvrability characteristics of thermal power plants, including the expansion of the regulation range, is the main condition for reliable operation of the power system. The results of research on calculation of dynamic non-uniformity coefficient for different power systems with wind power plants are presented. Comparison of the results made it possible to establish that changes in WPP power with an amplitude of up to 40% of the installed or baseline WPP power and a fluctuation period of 15 minutes to 3 hours constitute the main time duration (about 90%). Using the Australian power system as an example, it is shown that the distribution of WPPs across the power system has a positive effect on load schedule levelling.

About the authors

Oleg Yu. Sigitov

RUDN University

Author for correspondence.
Email: OlegSigitov@gmail.com
ORCID iD: 0009-0007-8541-4542
SPIN-code: 9915-2001

Ph.D. in Technical Sciences, Senior Lecturer of the Departament of Power Engineering, Academy of Engineering

6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

References

  1. Feng Sh, Wang W, Wang Z, Song Z, Yang Q, Wang B. Global Wind-Power Generation Capacity in the Context of Climate Change. Engineering. 2024. https://doi.org/10.1016/j.eng.2024.09.018 EDN: HNLMEG
  2. Nhien C, Behzadi A, Assareh E, Lee M, Sadrizadeh S. A new approach to wind farm stabilization and peak electricity support using fuel cells: Case study in Swedish cities. International Journal of Hydrogen Energy. 2024;80:22–38. https://doi.org/10.1016/j.ijhydene.2024.07.101 EDN: LTZFXY
  3. Arakelyan EK, Andryushin AV, Burtsev SYu, Andryushin KA, Khurshudyan SR. Methodology for consideration of specific features of combined-cycle plants with the optimal sharing of the thermal and the electric loads at combined heat power plants with equipment of a complex configuration. Thermal Engineering. 2015;62(5):335–340. https://doi.org/10.1134/S0040601515050018 EDN: VAAQGV
  4. Radin YuA, Davydov AV, Chugin AV, Piskovatskov IN. Determining the permissible load-control range of a PGU-450t power-generating unit operating in a condensing mode. Thermal Engineering. 2004;51(5):389–394. EDN: RNGJQX
  5. Georgievsky ID. Ways to improve the maneuverability parameters of traditional power plants in power systems in conditions of an increase in the share of renewable energy generation. XII International Scientific and Practical Conference. Current Trends and Innovations in Science and Production. Mezhdurechensk; 2023. P. 516.1–516.8. (In Russ.) EDN: QFEEYK
  6. Petrunin VV. Reactor units for small nuclear power plants. Herald of the Russian Academy of Sciences. 2021;91(3):335–346. https://doi.org/10.31857/S0869587321050182 EDN: VBQKKS
  7. Taibi E, Nikolakakis T, Gutierrez L, Fernandez del Valle C, Kiviluoma J, Lindroos TJ, Rissanen S. Power System Flexibility for the Energy Transition. Part 1: Overview for policy makers, International Renewable Energy Agency. Abu Dhabi; 2018. https://doi.org/10.13140/RG.2.2.11150.61768
  8. Cetinay H, Kuipers FA, Guven AN. Optimal siting and sizing of wind farms. Renewable Energy. 2017;101:51–58. https://doi.org/10.1016/j.renene.2016.08.008
  9. Ahn E, Hur J. A Practical Metric to Evaluate the Ramp Events of Wind Generating Resources to Enhance the Security of Smart Energy Systems. Energies. 2022;15(7):2676. https://doi.org/10.3390/en15072676 EDN: LQECLU
  10. D’Amico G, Petroni F, Vergine S. Ramp Rate Limitation of Wind Power: An Overview. Energies. 2022;15:5850. https://doi.org/10.3390/en15165850 EDN: ZLNACL
  11. Radin YA, Kontorovich TS, Molchanov KA. The effectiveness of combined-cycle power plants hot startups simulating. Thermal Engineering. 2015;62(9):630–635. https://doi.org/10.1134/S0040601515090074
  12. Sigitov OYu. Development of a method for the rational arrangement of wind power plants in the electric power system (abstract of the dissertation). Moscow; 2022. (In Russ.)
  13. Sigitov O, Chemborisova N. Operation features of wind power plants as part of an electric power system. Power Technology and Engineering. 2021;55(4):620–624. https://doi.org/10.1007/s10749-021-01407-y EDN: JOAIAZ
  14. Vivchar A, Sigitov OYu. Wind farms and thermal power plants operation problems in electric power system. Electric stations. 2022:12(1097):2–9. (In Russ.) EDN: XFLTEJ
  15. Sigitov OYu. Wind farms and solar photovoltaic power plants operation features in energy power system. Electric stations. 2022:7(1116):25–32. (In Russ.) https://doi.org/10.71841/ep.elst.2024.1116.7.04 EDN: IALSPK

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).