EVOLUTIONARY ALGORITHMS FOR THE PROBLEM OF OPTIMAL CONTROL

Capa

Citar

Texto integral

Resumo

The paper describes some of the popular evolutionary algorithms: genetic algorithms, differential evolution method, particle swarm optimization and bat-inspired method. With the help of these algorithms the problem of optimal control of a mobile robot is solved. For comparison the same problem is solved with the algorithm of fast gradient descent and random search. The computational experiments showed that evolutionary algorithms provide more accurate results for the optimal control problems than fast gradient descent algorithm.

Sobre autores

A Diveev

Institution of Russian Academy of Sciences Dorodnicyn Computing Centre of RAS; Peoples’ Friendship University of Russia (RUDN University)

Autor responsável pela correspondência
Email: aidiveev@mail.ru

Doctor of technical sciences, professor, chief of sector of Cybernetic problems, Federal Research Centre “Computer Science and Control” of Russia Academy of Sciences, professor of department Mechanics and mechatronics, Engineering Academy, Peoples’ Friendship University of Russia (RUDN University)

Vavilova str., 40, Moscow, Russia, 119333; Miklukho-Maklaya str., 6, Moscow, Russia, 117198

S Konstantinov

Peoples’ Friendship University of Russia (RUDN University)

Email: konstantinov_sv@rudn.university

senior lecturer of department Mechanics and mechatronics, Engineering Academy, Peoples’ Friendship University of Russia (RUDN University). Research interests: Optimization algorithms, evolutionary algorithms, genetic algorithms, computational methods for problems of optimal control

Miklukho-Maklaya str., 6, Moscow, Russia, 117198

Bibliografia

  1. Polak E. Chislennye metody optimizatsii. M.: Mir, 1974. (In Russ).
  2. Karpenko A.P. Sovremennye algoritmy poiskovoi optimizatsii. Algoritmy, vdokhnovlennye prirodoi. M.: Izdatel’stvo MGTU im. N.E. Baumana, 2014. (In Russ).
  3. Goldberg D.E. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, 1989.
  4. Storn R., Price K. Differential Evolution — A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces / Journal of Global Optimization. 1997. No. 11. P. 341—359.
  5. Kennedy J., Eberhart R. Particle Swarm Optimization / Proceedings of IEEE International Conference on Neural Networks IV. 1995. P. 1942—1948.
  6. Yang Xin-She. A New Metaheuristic Bat-Inspired Algorithm, in: Nature Inspired Cooperative Strategies for Optimization (NISCO 2010). Studies in Computational Intelligence. Berlin: Springer, 2010. Vol. 284. P. 65—74.
  7. Karpenko A.P. Populyatsionnye algoritmy global’noi poiskovoi optimizatsii. Obzor novykh i maloizvestnykh algoritmov. Informatsionnye tekhnologii. 2012. No. 7 P. 1—32. (In Russ).
  8. Panteleev A.V., Letova T.A. Metody optimizatsii v primerakh i zadachakh: ucheb. posobie. M.: Vysshaya shkola, 2005. (In Russ).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».