Генерация реалистичных изображений нефтегазовой инфраструктуры на космических снимках с использованием диффузионных моделей
- Авторы: Лобанов В.К.1, Кондрашина М.С.1, Гаджиев Ш.М.1, Сокибеков М.Ш.1
-
Учреждения:
- Российский университет дружбы народов
- Выпуск: Том 26, № 3 (2025)
- Страницы: 266-272
- Раздел: Статьи
- URL: https://journal-vniispk.ru/2312-8143/article/view/350894
- DOI: https://doi.org/10.22363/2312-8143-2025-26-3-266-272
- EDN: https://elibrary.ru/YICUJW
- ID: 350894
Цитировать
Полный текст
Аннотация
В рамках исследования была изучена возможность применения методов машинного обучения, в частности генеративных моделей, для семантического редактирования космических снимков. Основное внимание уделено актуальной архитектуре на основе диффузионных моделей, способной генерировать целевые объекты непосредственно на спутниковых изображениях. Однако ввиду специфики выбранной предметной области - генерации реалистичных изображений объектов нефтегазовой инфраструктуры (таких как трубопроводы) были обнаружены существенные недостатки стандартной модели в части реализма и соответствия окружающему контексту. Для решения данной проблемы проводилось дообучение нейронной сети. Цель дообучения - улучшение качества визуализации проектных решений, связанных с трубопроводами. Предложен и детально описан методический подход к формированию специализированного обучающего набора данных. На основе реальных трасс трубопроводов в QGIS созданы пространственно привязанные векторные слои; сгенерирован набор тайлов космических снимков с точными аннотациями границ труб. Результаты экспериментального дообучения модели продемонстрировали значимое улучшение качества генерируемых изображений объектов нефтегазовой инфраструктуры на космических снимках по сравнению с показателями исходной, неадаптированной модели. Разработанная дообученная модель обеспечивает высокореалистичную генерацию трубопроводов, корректно интегрируя их в существующий ландшафт на снимке. Визуальное сравнение результатов до и после дообучения подтверждает устранение артефактов и достижение необходимого уровня детализации. Работа подтверждает эффективность подхода с формированием предметно-ориентированных датасетов и дообучением для решения специфических задач визуализации в ДЗЗ.
Об авторах
Василий Константинович Лобанов
Российский университет дружбы народов
Email: lobanov_vk@pfur.ru
ORCID iD: 0000-0001-8163-9663
SPIN-код: 7266-5340
старший преподаватель кафедры механики и процессов управления, инженерная академия
Российская Федерация, 117198, г. Москва, ул. Миклухо-Маклая, д. 6Мария Сергеевна Кондрашина
Российский университет дружбы народов
Автор, ответственный за переписку.
Email: 1132236536@rudn.ru
ORCID iD: 0009-0008-8526-9143
магистрант кафедры механики и процессов управления, инженерная академия
Российская Федерация, 117198, г. Москва, ул. Миклухо-Маклая, д. 6Шамиль Магомедэминович Гаджиев
Российский университет дружбы народов
Email: 1132236511@rudn.ru
ORCID iD: 0009-0006-1570-4133
магистрант кафедры механики и процессов управления, инженерная академия
Российская Федерация, 117198, г. Москва, ул. Миклухо-Маклая, д. 6Максад Ширинбекович Сокибеков
Российский университет дружбы народов
Email: 1032185455@rudn.ru
ORCID iD: 0009-0009-0261-7374
магистрант кафедры архитектура, реставрация и дизайн, инженерная академия
Российская Федерация, 117198, г. Москва, ул. Миклухо-Маклая, д. 6Список литературы
- Immanuel SA, Cho W, Heo J, Kwon D. Tackling Few-Shot Segmentation in Remote Sensing via Inpainting Diffusion Model. ICLR 2025 Machine Learning for Remote Sensing (ML4RS) Workshop. 2025. https://doi.org/10.48550/arXiv.2503.03785
- Rombach R, Blattmann A, Lorenz D, Esser P, Ommer B. High-Resolution Image Synthesis with Latent Diffusion Models. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022 June 18-24; New Orleans, LA, USA. IEEE. 2022:10674-10685. https://doi.org/10.1109/CVPR52688.2022.01042
- Panboonyuen T, Charoenphon C, Satirapod C. SatDiff: A Stable Diffusion Framework for Inpainting Very High-Resolution Satellite Imagery. IEEE Access. 2025;13:51617-51631. https://doi.org/10.1109/ACCESS.2025.3551782
- Kingma DP, Welling M. Auto-Encoding Variational Bayes (Version 11). International Conference on Learning Representations (ICLR). 2014. https://doi.org/10.48550/ARXIV.1312.6114
- Ronneberger O, Fischer P, Brox T. U-Net: Convo-lutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Inter-vention MICCAI. 2015;9351;234-241. https://doi.org/10.48550/arXiv.1505.04597
- Radford A, Kim JW, Hallacy C, Ramesh A, Goh G, Agarwal S, et al. Learning Transferable Visual Models from Natural Language Supervision. Proceedings of the 38th International Conference on Machine Learning, PMLR. 2021;139:8748-8763. https://doi.org/10.48550/ARXIV.2103.00020
- Liu F, Chen D, Guan Z, Zhou X, Zhu J, Ye Q, et al. RemoteCLIP: A Vision Language Foundation Model for Remote Sensing. IEEE Transactions on Geoscience and Remote Sensing. 2024;62:1-16. https://doi.org/10.1109/TGRS.2024.3390838
- He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016;770-778. https://doi.org/10.48550/ARXIV.1512.03385
- Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, et al. An Image is Worth 16×16 Words: Transformers for Image Recognition at Scale. International Conference on Learning Representations (ICLR 2021). https://doi.org/10.48550/ARXIV.2010.11929
- Immanuel SA, Cho W, Heo J, Kwon D. Tackling Few-Shot Segmentation in Remote Sensing via Inpainting Diffusion Model. ICLR 2025 Machine Learning for Remote Sensing (ML4RS) Workshop. 2025. https://doi.org/10.48550/arXiv.2503.03785
Дополнительные файлы


