Comparative Performance of Machine Learning Classifiers in Detecting Vibration Anomalies in Industrial Power Systems

封面

如何引用文章

全文:

详细

This study examines methodologies for detecting abnormalities in Combined Cycle Power Plants (CCPPs) through application of vibration signal analysis and machine learning algorithms. Models’ performances were evaluated using different key metrics. The results indicated that the Random Forest classifier, particularly in combination with ECPT data, exhibited superior performance, achieving perfect scores across all metrics. It highlights the robustness of the Random Forest algorithm when applied to ECPT data, making it the most effective approach for vibration anomaly detection. The K-NN classifier demonstrated satisfactory performance when applied to AS and BTT data, attaining accuracy scores of 0.49 and 0.52, respectively; however, it exhibited limitations in handling diverse data distributions, as reflected in its lower accuracy of 0.44 with LDV data. Both GBM and SVM performed suboptimal, with GBM achieving a maximum accuracy of 0.52 with AS data, while SVM attained the highest accuracy of 0.49 with the same technique. Findings underscore the critical importance of selecting an appropriate combination of machine learning models and vibration measurement techniques to enhance the accuracy of anomaly detection. Eventually, the Random Forest algorithm is well suited for complex datasets with varied patterns, while K-NN may serve as an efficient alternative for simpler, more uniform data.

作者简介

Al-Tekreeti Fahmi

RUDN University

Email: wat1680@gmail.com
ORCID iD: 0000-0002-2752-5750

Ph.D. student of the Department of Mechanical Engineering, Academy of Engineering

6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

Kazem Reza Kashyzadeh

RUDN University

编辑信件的主要联系方式.
Email: reza-kashi-zade-ka@rudn.ru
ORCID iD: 0000-0003-0552-9950

Ph.D. in Technical Sciences, Professor of the Department of Transport Equipment and Technology, Academy of Engineering

6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

Siamak Ghorbani

RUDN University

Email: gorbani-s@rudn.ru
ORCID iD: 0000-0003-0251-3144
SPIN 代码: 8272-2337

Candidate of Technical Sciences, Associate Professor of the Department of Mechanical Engineering Technologies, Academy of Engineering

6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

Sergei Kupreev

RUDN University

Email: kupreev-sa@rudn.ru
ORCID iD: 0000-0002-8657-2282
SPIN 代码: 2287-2902

Doctor of Sciences (Techn.), Professor of the Department of Mechanics and Control Processes, Academy of Engineering

6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

Oleg Samusenko

RUDN University

Email: samusenko@rudn.ru
ORCID iD: 0000-0002-8350-9384
SPIN 代码: 6613-5152
Scopus 作者 ID: 57201881755

Ph.D of Technical Sciences, Head of the Department of Innovation Management in Industries, Academy of Engineering

6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

参考

  1. Brahimi L, Hadroug N, Iratni A, Hafaifa A, Colak I. Advancing predictive maintenance for gas turbines: An intelligent monitoring approach with ANFIS, LSTM, and reliability analysis. Computers & Industrial Engineering. 2024;191:110094. https://doi.org/10.1016/j.cie.2024.110094
  2. Fahmi ATWK, Reza Kashyzadeh K, Ghorbani S. Fault detection in the gas turbine of the Kirkuk power plant: An anomaly detection approach using DLSTM-Autoencoder. Engineering Failure Analysis. 2024;160:108213. https://doi.org/10.1016/j.engfailanal.2024.108213
  3. Fu W, Hopkins WS. Applying machine learning to vibrational spectroscopy. The Journal of Physical Chemistry A. 2018;122(1):167-171. https://doi.org/10.1021/acs.jpca.7b10303
  4. Fahmi ATWK, Reza Kashyzadeh K, Ghorbani S. A comprehensive review on mechanical failures cause vibration in the gas turbine of combined cycle power plants. Engineering Failure Analysis. 2022;134:106094. https://doi.org/10.1016/j.engfailanal.2022.106094
  5. Salilew WM, Karim ZAA, Lemma TA. Investi-gation of fault detection and isolation accuracy of different Machine learning techniques with different data processing methods for gas turbine. Alexandria Engineering Journal. 2022;61(12):12635-12651. https://doi.org/10.1016/j.aej.2022.06.026
  6. Yang X, Bai M, Liu J, Liu J, Yu D. Gas path fault diagnosis for gas turbine group based on deep transfer learning. Measurement. 2021;181:109631. https://doi.org/10.1016/j.measurement.2021.109631
  7. Sudhakar GNDS, Sekhar AS. Coupling misalignment in rotating machines: modelling, effects and monitoring. Noise & Vibration Worldwide. 2009;40(1):17-39. https://doi.org/10.1260/0957-4565.40.1.17
  8. Sinha JK, Hahn W, Elbhbah K, Tasker G, Ullah I. Vibration investigation for low pressure turbine last stage blade failure in steam turbines of a power plant. Proceedings of the ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. Volume 7: Structures and Dynamics, Parts A and B. 2012;44731:363-371. https://doi.org/10.1115/GT2012-70129
  9. Fahmi AWK, Reza Kashyzadeh K, Ghorbani S. Smart maintenance strategies in combined cycle power plant. Journal of Computational & Applied Research in Mechanical Engineering (JCARME). 2024;14(1):35-46. https://doi.org/10.22061/jcarme.2024.10797.2415
  10. Voris J, Saxena N, Halevi T. Accelerometers and randomness: perfect together. Proceedings of the fourth ACM conference on Wireless network security. 2011;115-126. http://doi.org/10.1145/1998412.1998433
  11. Mevissen F, Meo M. A review of NDT/structural health monitoring techniques for hot gas components in gas turbines. Sensors. 2019;19(3):711. https://doi.org/10.3390/s19030711
  12. Wang KS, Guo D, Heyns PS. The application of order tracking for vibration analysis of a varying speed rotor with a propagating transverse crack. Engineering Failure Analysis. 2012;21:91-101. https://doi.org/10.1016/j.engfailanal.2011.11.020
  13. Anand LDV, Hepsiba D, Palaniappan S, Vijayakumar P, Sumathy B, Rani SS. Automatic strain sensing measurement on steel beam using strain gauge. Materials Today: Proceedings. 2021;45:2578-2580. https://doi.org/10.1016/j.matpr.2020.11.274
  14. Machine Learning Random Forest Algorithm - Javatpoint. Available from: https://www.scribd.com/document/681586333/Machine-Learning-Random-Forest-Algo rithm-Javatpoint. (accessed: 12.02.2025).
  15. Maleki E, Unal O, Sahebari SMS, Reza Kashy-zadeh K. A novel approach for analyzing the effects of Almen intensity on the residual stress and hardness of shot-peened (TiB+ TiC)/Ti-6Al-4V composite: Deep learning. Materials. 2023;16(13):4693. https://doi.org/10.3390/ma 16134693
  16. Kapler J, Campbell S, Credland M. Continuous automated flux monitoring for turbine generator rotor con-dition assessment. Iris Power Engineering Inc. 2004;27. Available from: https://www.marubun.co.jp/wp-content/uploads/a7ijkd000000119x/epri-2004.pdf (accessed: 12.02.2025).
  17. Zhang J, Duan F, Niu G, Jiang J, Li J. A blade tip timing method based on a microwave sensor. Sensors. 2017;17(5):1097. https://doi.org/10.3390/s17051097
  18. Lai H, Adams II TA. Life cycle analyses of SOFC/gas turbine hybrid power plants accounting for long-term degradation effects. Journal of Cleaner Production. 2023;412:137411. https://doi.org/10.1016/j.jclepro.2023.137411
  19. Vyroubal D. Eddy-current displacement transducer with extended linear range and automatic tuning. IEEE Transactions on Instrumentation and Measurement. 2009;58(9):3221-3231. https://doi.org/10.1109/TIM.2009.2017165
  20. Zielinski M, Ziller G. Noncontact vibration measurements on compressor rotor blades. Measurement Science and Technology. 2000;11(7):847. https://doi.org/10.1088/0957-0233/11/7/301
  21. Schewe M, Rembe C. Signal diversity for laser-Doppler vibrometers with raw-signal combination. Sensors. 2021;21(3):998. https://doi.org/10.3390/s21030998
  22. Lee YJ, Ju YH. An assessment of insulation con-dition for generator rotor windings. IEEE 2008 International Conference on Condition Monitoring and Diagnosis. 2008;543-545. https://doi.org/10.1109/CMD.2008.4580345

补充文件

附件文件
动作
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».