Некомпланарная встреча на околокруговой орбите с помощью двигателя малой тяги

Обложка

Цитировать

Полный текст

Аннотация

Представлен метод, позволяющий вычислить параметры маневров, выполняемых на нескольких витках с применением двигателя малой тяги. Эти маневры обеспечивают перелет активного космического аппарата в пределы заданной области целевого космического объекта. Перелет осуществляется в окрестности круговой орбиты. Для решения данной задачи применяются упрощенные математические модели движения. Влияние нецентральности гравитационного поля и атмосферы в расчетах не учитывается. Процесс определения параметров маневров разбит на несколько этапов: на первом и третьем этапах параметры импульсного перехода и перехода, осуществляемого двигателем малой тяги, вычисляются с использованием аналитических методов. На втором этапе распределение маневрирования между витками, обеспечивающее успешное решение задачи встречи, определяется путем изменения одной переменной. Данный метод отличается простотой и высокой надежностью в определении параметров маневров, что делает его применимым на борту космических аппаратов. В рамках исследования также проведен анализ зависимости суммарной характеристической скорости решения задачи встречи от величины тяги двигателя. Параметры маневров могут быть уточнены с помощью итерационной процедуры, чтобы учесть основные возмущения.

Об авторах

Андрей Анатольевич Баранов

Институт прикладной математики имени М.В. Келдыша РАН

Email: andrey_baranov@list.ru
ORCID iD: 0000-0003-1823-9354
SPIN-код: 6606-3690

кандидат физико-математических наук, ведущий научный сотрудник

Москва, Россия

Адилсон Педро Оливио

Российский университет дружбы народов

Автор, ответственный за переписку.
Email: pedrokekule@mail.ru
ORCID iD: 0000-0001-5632-3747

аспирант, департамент механики и процессов управления, инженерная академия

Москва, Россия

Список литературы

  1. Prussing JE. Optimal two- and three-impulse fixedtime rendezvous in the vicinity of a circular orbit. AIAA Journal. 1970;8(7):46-56. https://doi.org/10.2514/3.5876
  2. Marec J.P. Optimal space trajectories (vol. 1). Amsterdam, Oxford, New York: Elsevier Sci. Publ. Co.; 1979.
  3. Bulynin YuL. Ballistic support for orbital motion control of geostationary spacecraft at various stages of operation. System Analysis, Control and Navigation: Abstracts of Reports. Crimea, Yevpatoria; 2008. P. 73-74 ISBN 978-5-4465-3279-7. (In Russ.)
  4. Rylov YuP. Control of a spacecraft entering the satellite system using electric rocket engines. Kosmicheskie issledovaniya. 1985;23(5):691-700. (In Russ.)
  5. Kulakov AYu. Model and algorithms of reconfiguration of the spacecraft motion control system (dissertation of the candidate of Technical Sciences). St. Petersburg; 2017. (In Russ.)
  6. Tkachenko IS. Analysis of key technologies for creating multisatellite orbital constellations of small spacecraft. Ontology of Designing. 2021;11(4):478-499. https://doi.org/10.18287/2223-9537-2021-11-4-478-499
  7. Bazhinov IK, Gavrilov VP, Yastrebov VD, et al. Navigation support for the flight of the Salyut - 6Soyuz-Progress orbital complex. Moscow: Nauka Publ.; 1985. (In Russ.)
  8. Baranov A.A. Algorithm for calculating the parameters of four-impulse transitions between close almostcircular orbits. Cosmic Research. 1986;24(3):324-327.
  9. Lidov ML. Mathematical analogy between some optimal problems of trajectory corrections and selection of measurements and algorithms of their solution. Kosmicheskie Issledovaniya. 1971;9(5):687-706. (In Russ.)
  10. Gavrilov V, Obukhov E. Correction problem with fixed number of impulses. Kosmicheskie Issledovaniya.1980;18(2):163-172. (In Russ.)
  11. Lion PM, Handelsman M. Basis-vector for pulse trajectories with a given flight time. Rocket Technology and Cosmonautics. 1968;6(1):153-160. (In Russ.)
  12. Jezewski DJ, Rozendaal HL. An efficient method for calculating optimal free-space n-impulse trajectories. AIAA Journal. 1968;6(11):2160-2165. (In Russ.)
  13. Baranov AA. Geometric solution of the problem of a rendezvous on close nearly circular coplanar orbits. Cosmic Research. 1989;27(6):689-697.
  14. Baranov AA, Roldugin DS. Six-impulse maneuvers for rendezvous of spacecraft in near-circular non-coplanar orbits. Cosmic Research. 2012;50(6):441-448.
  15. Edelbaum TN. Minimum Impulse Transfer in the Vicinity of a Circular Orbit. Journal of the Astronautical Sciences. 1967;XIV(2):66-73.
  16. Lebedev VN. Calculation of the motion of a spacecraft with low thrust. Moscow: Publishing House of the USSR Academy of Sciences, 1968. (In Russ.)
  17. Grodzovsky GL, Ivanov YuN, Tokarev VV. Mechanics of low-thrust space flight. Moscow: Nauka Publ.; 1966. (In Russ.)
  18. Petukhov VG. Continuation method for optimization of low-thrust interplanetary trajectories. Cosmic Research. 2012;50(3):258-270. (In Russ.) EDN: OXXIVF
  19. Petukhov VG, Olívio AP. Optimization of the finite-thrust trajectory in the vicinity of a circular orbit. Advances in the Astronautical Sciences. 2021;174:5-15.
  20. Baranov AA. Maneuvering in the vicinity of a circular orbit. Moscow: Sputnik+ Publ.; 2016. (In Russ.)
  21. Ulybyshev YuP. Optimization of multi-mode rendezvous trajectories with constraints. Cosmic Research. 2008;46(2):133-145. (In Russ.)
  22. Ilyin VA, Kuzmak GE. Optimal flights of space-craft. Moscow: Nauka Publ.; 1976. (In Russ.)
  23. Baranov AA, Olivio AP. Coplanar multi-turn rendezvous in near-circular orbit using a low-thrust engine. RUDN Journal of Engineering Research. 2022; 23(4):283-292. http://doi.org/10.22363/2312-8143-2022-23-4-283-29
  24. Baranov A.A, de Prado AFB, Razumny VY., Baranov Jr.AA. Optimal low-thrust transfers between close near-circular coplanar orbits. Cosmic Research. 2011;49(3):269-279. https://doi.org/10.1134/S0010952511030014
  25. Clohessy WH, Wiltshire RS. Terminal Guidance System for Satellite Rendezvous. Journal of the Aero-space Sciences. 1960;27(9):653-678. https://doi.org/10.2514/8.8704
  26. Hill GW. Researches in Lunar Theory. American Journal of Mathematics. 1878;1:5-26.
  27. Elyasberg PE. Introduction to the theory of flight of artificial Earth satellites. Moscow: Nauka Publ.; 1965. (In Russ.)

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».