Exploring the use of generative artificial intelligence by university students: a systematic literature review


Cite item

Full Text

Abstract

Problem statement . Artificial intelligence (AI) has become a transformative force across various sectors, including education. The release of ChatGPT marked a pivotal shift in the educational landscape, accompanied by rapid proliferation of other generative AI (Gen-AI). Gen-AI tools have quickly become one of the most prevalent forms of AI in higher education. This research focus highlights a need for a comprehensive examination of Gen-AI’s use. Addressing this gap is essential to developing a holistic understanding of GenAI’s role in higher education, particularly from the student perspective. Given the rapid evolution of Gen-AI technology along with its rapidly growing and often uncontrolled adoption among students, a systematic literature review is necessary to synthesise current knowledge. Methodology . This study conducted a tertiary review utilising a systematic approach outlined in the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, focusing on three key steps: search strategy and study selection, data analysis, and synthesis of findings. Data for this study was sourced from two databases: Google Scholar and Lens. These databases were chosen for their extensive coverage and accessibility, ensuring a comprehensive collection of relevant literature on AI use in higher education. The data was approached qualitatively: apriori and aposteriori codes were applied to the papers retrieved from Google Scholar. For a deeper analysis of the selected papers, we conducted a thematic analysis to identify recurring themes and patterns. Results . From the initial screening of 620 papers, 42 were selected for the final sample based on the predefined inclusion and exclusion criteria. The main uses of Gen-AI as identified in the analysed papers are summarised in the table. Conclusion. The variance in how AI is used among students -depending on their competence levels - highlights an essential consideration for educators: AI can potentially widen the gap between more and less competent learners. This observation calls for a pedagogical balance where AI supports learning without diminishing the educational rigour necessary for critical thinking and problem-solving skills.

About the authors

Anna E. Korchak

Higher School of Economics

Author for correspondence.
Email: aekorchak@hse.ru
ORCID iD: 0000-0002-6007-3098

Research Assistant, Centre of Sociology for Higher Education, Institute of Education

20 Myasnitskaya St, Moscow, 101000, Russian Federation

Yevgeny D. Patarakin

Higher School of Economics; Moscow City University

Email: patarakined@mgpu.ru
ORCID iD: 0000-0002-1216-5043
SPIN-code: 7044-4695

Doctor of Pedagogical Sciences, Professor at the Department of IT, Management and Technology, Institute of Digital Education, Moscow City University ; Professor at the Department of Educational Programmes, Institute of Education, Higher School of Economics

4/1 2nd Selskokhozyaystvenny Proezd, 129226, Moscow, Russian Federation; 20 Myasnitskaya St, Moscow, 101000, Russian Federation

Jamie Costley

United Arab Emirates University

Email: jcostley@uaeu.ac.ae
ORCID iD: 0000-0002-1685-3863

PhD, Assistant Professor at College of Education

H1 Sheik Khalifa Bin Zayed St, Al Ain, 15551, United Arab Emirates

References

  1. Zawacki-Richter O, Bai JYH, Lee K, Slagter van Tryon PJ, Prinsloo P. New advances in artificial intelligence applications in higher education? International Journal of Educational Technology in Higher Education. 2024;21:32. https://doi.org/10.1186/s41239-024-00464-3
  2. Bozkurt A, Sharma RC. Challenging the status quo and exploring the new boundaries in the age of algorithms: Reimagining the role of generative AI in distance education and online learning. Asian Journal of Distance Education. 2023;18(1):i-viii. https://doi.org/10.5281/zenodo.7755273
  3. Rudolph J, Tan Sh, Tan S. War of the chatbots: Bard, Bing Chat, ChatGPT, Ernie and beyond. The new AI gold rush and its impact on higher education. Journal of Applied Learning and Teaching. 2023;6(1). https://doi.org/10.37074/jalt.2023.6.1.23
  4. Huang G, Liang X. Generative AI research of education from 2013 to 2023. In: Proceedings of the 6th International Conference on Computer Science and Technologies in Education, 19-21 April 2024, Xi’an, China. IEEE Publ.; 2024. p. 125-130. https://doi.org/10.1109/CSTE62025.2024.00030
  5. Baidoo-anu D, Ansah LO. Education in the era of generative artificial intelligence (AI): Understanding the potential benefits of ChatGPT in promoting teaching and learning. Journal of AI. 2023;7(1):52-62. https://doi.org/10.61969/jai.1337500
  6. Dogru T, Line N, Hanks L, Acikgoz F, Abbott JA, Bakir S, et al. The implications of generative artificial intelligence in academic research and higher education in tourism and hospitality. Tourism Economics. 2024;30(5):1083-1094. https://doi.org/10.1177/ 13548166231204065
  7. Nikolopoulou K. Generative artificial intelligence in higher education: Exploring ways of harnessing pedagogical practices with the assistance of ChatGPT. International Journal of Changes in Education. 2024;1(2):103-111. https://doi.org/10.47852/bonviewIJCE42022489
  8. Crompton H, Burke D. Artificial intelligence in higher education: the state of the field. International Journal of Educational Technology in Higher Education. 2023;20:22. https://doi.org/10.1186/s41239-023-00392-8
  9. Bantugan BS, Li X, Liu L, Liu Y, Wang X, Yang M, Zhang X. The adoption of artificial intelligence of selected international Chinese educators enrolled as graduate students in the College of Education of St. Paul University Manila. International Journal of Research and Scientific Innovation. 2024;11(2):133-146. https://doi.org/10.51244/IJRSI.2024.1102011
  10. Delcker J, Heil J, Ifenthaler D, Seufert S, Spirgi L. First-year students AI-competence as a predictor for intended and de facto use of AI-tools for supporting learning processes in higher education. International Journal of Educational Technology in Higher Education. 2024;21:18. https://doi.org/10.1186/s41239-024-00452-7
  11. Woo DJ, Susanto H, Yeung CH, Guo K, Fung AKY. Exploring AI-generated text in student writing: How does AI help? ArXiv [Preprint] 2023. https://arxiv.org/pdf/2304.02478 (accessed: 05.12.2024)
  12. Yilmaz R, Yilmaz FGK. The effect of generative artificial intelligence (AI)-based tool use on students’ computational thinking skills, programming self-efficacy and motivation. Computers and Education: Artificial Intelligence. 2023;4:100147. https://doi.org/10.1016/j.caeai.2023.100147
  13. Daher W, Diab H, Rayan A. Artificial intelligence generative tools and conceptual knowledge in problem solving in chemistry. Information. 2023;14(7):409. https://doi.org/10.3390/info14070409
  14. Chen X, Zou D, Xie H, Cheng G, Liu C. Two decades of artificial intelligence in education: contributors, collaborations, research topics, challenges, and future directions. Educational Technology & Society. 2022;25(1):28-47. https://www.jstor.org/stable/10.2307/48647028
  15. Deng X, Yu Z. A meta-analysis and systematic review of the effect of chatbot technology use in sustainable education. Sustainability. 2023;15(4):2940. https:// doi.org/10.3390/su15042940
  16. Bond M, Khosravi H, De Laat M, Bergdahl N, Negrea V, Oxley E, et al. A meta systematic review of artificial intelligence in higher education: a call for increased ethics, collaboration, and rigour. International Journal of Educational Technology in Higher Education. 2024;21:4. https://doi.org/10.1186/s41239-023-00436-z
  17. Ippolito D, Yuan A, Coenen A, Burnam S. Creative writing with an AI-powered writing assistant: Perspectives from professional writers. ArXiv [Preprint] 2022. https://arxiv.org/pdf/2211.05030 (accessed: 19.09.2024)
  18. Malinka K, Peresíni M, Firc A, Hujnák O, Janus F. On the educational impact of ChatGPT: Is artificial intelligence ready to obtain a university degree? In: Proceedings of the 2023 Conference on Innovation and Technology in Computer Science Education, 7-12 July 2023, Turku, Finland. Vol. 1. New York: Association for Computing Machinery; 2023. p. 47-53. https://doi.org/10.1145/3587102.3588827
  19. Nguyen A, Hong Y, Dang B, Huang X. Human-AI collaboration patterns in AI-assisted academic writing. Studies in Higher Education. 2024;49(5):847-864. https://doi.org/10.1080/03075079.2024.2323593
  20. Liu J, Li S. Toward artificial intelligence-human paired programming: A review of the educational applications and research on artificial intelligence code-generation tools. Journal of Educational Computing Research. 2024;62(5). https://doi.org/10.1177/07356331241240460
  21. Barrett A, Pack A. Not quite eye to A.I.: student and teacher perspectives on the use of generative artificial intelligence in the writing process. International Journal of Educational Technology in Higher Education. 2023;20:59. https://doi.org/10.1186/s41239-023-00427-0
  22. Li Z, Wang C, Bonk C. Exploring the utility of ChatGPT for self-directed online language learning. Online Learning. 2024;28(3):157-180. https://doi.org/10.24059/olj.v28i3.4497
  23. Wang C, Li Z, Bonk C. Understanding self-directed learning in AI-assisted writing: A mixed methods study of postsecondary learners. Computers and Education: Artificial Intelligence. 2024;6:100247. https://doi.org/10.1016/j.caeai.2024.100247
  24. Belda-Medina J, Kokošková V. Integrating chatbots in education: Insights from the Chatbot-Human Interaction Satisfaction Model (CHISM). International Journal of Educational Technology in Higher Education. 2023;20:62. https://doi.org/10.1186/s41239-023-00432-3
  25. Zawacki-Richter O, Marín VI, Bond M, Gouverneur F. Systematic review of research on artificial intelligence applications in higher education - where are the educators? International Journal of Educational Technology in Higher Education. 2019;16:39. https://doi.org/10.1186/s41239-019-0171-0
  26. Chen X, Zou D, Xie H, Cheng G, Liu C. Two decades of artificial intelligence in education. Educational Technology & Society. 2022;25(1):28-47. https://www.jstor.org/stable/10.2307/48647028
  27. Zhai X, Chu X, Chai ChS, Jong MSY, Istenic A, Spector M et al. A Review of artificial intelligence (AI) in education from 2010 to 2020. Complexity. 2021;1. https:// doi.org/10.1155/2021/8812542
  28. Zawacki-Richter O, Naidu S. Mapping research trends from 35 years of publications in Distance Education. Distance Education. 2016;37(3):245-269. https://doi.org/ 10.1080/01587919.2016.1185079
  29. Bozkurt A, Zawacki-Richter O. Trends and patterns in distance education (2014-2019): A synthesis of scholarly publications and a visualisation of the intellectual landscape. The International Review of Research in Open and Distributed Learning. 2021;22(2):19-45. https://doi.org/10.19173/irrodl.v22i2.5381
  30. Bearman M, Ryan J, Ajjawi R. Discourses of artificial intelligence in higher education: A critical literature review. Higher Education. 2023;86:369-385. https:// doi.org/10.1007/s10734-022-00937-2
  31. Bizami NA, Tasir Z, Na Kew SN. Innovative pedagogical principles and technological tools capabilities for immersive blended learning: A systematic literature review. Education and Information Technologies. 2023;28:1373-1425. https://doi.org/ 10.1007/s10639-022-11243-w
  32. Koh JHL, Daniel BK. Shifting online during COVID-19: A systematic review of teaching and learning strategies and their outcomes. International Journal of Educational Technology in Higher Education. 2022;19:56. https://doi.org/10.1186/s41239-022-00361-7
  33. Bond M, Buntins K, Bedenlier S, Zawacki-Richter O, Kerres M. Mapping research in student engagement and educational technology in higher education: A systematic evidence map. International Journal of Educational Technology in Higher Education. 2020;17:2. https://doi.org/10.1186/s41239-019-0176-8
  34. Gough D, Oliver S, Thomas J. An introduction to systematic reviews. 2nd ed. London: Sage Publ.; 2017.
  35. Daniel BK, Harland T. Higher education research methodology: A step-by-step guide to the research process. London: Routledge; 2017.
  36. Grant MJ, Booth A. A typology of reviews: An analysis of 14 review types and associated methodologies. Health Information & Libraries Journal. 2009;26(2):91-108. https://doi.org/10.1111/j.1471-1842.2009.00848.x
  37. Krippendorff K. Content analysis: An introduction to its methodology. Thousand Oaks, California: Sage Publ.; 2018.
  38. Weber RPh. Basic content analysis. 2nd ed. Newbury Park, California: Sage Publ.; 1990.
  39. Braun V, Clarke V. Using thematic analysis in psychology. Qualitative Research in Psychology. 2006;3(2):77-101. https://doi.org/10.1191/1478088706qp063oa
  40. Nowell LS, Norris JM, White DE, Moules NJ. Thematic analysis: Striving to meet the trustworthiness criteria. International Journal of Qualitative Methods. 2017;16. https://doi.org/10.1177/1609406917733847
  41. Thurmond VA. The point of triangulation. Journal of Nursing Scholarship. 2001;33(3):253-258. https://doi.org/10.1111/j.1547-5069.2001.00253.x
  42. Shea BJ, Reeves BC, Wells G, Thuku M, Hamel C, Moran J, et al. Amstar 2: A critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ. 2017;358:j4008. https://doi.org/10.1136/bmj.j4008
  43. Popay J, Roberts H, Sowden A, Petticrew M, Arai L, Rodgers M, et al. Guidance on the conduct of narrative synthesis in systematic reviews: A product of the ESRC methods programme. Version 1. Lancaster University; 2006. https://doi.org/10.13140/ 2.1.1018.4643
  44. Alhumaid K, Naqbi S, Elsori D, Mansoori M. The adoption of artificial intelligence applications in education. International Journal of Data and Network Science. 2023;7:457-466. https://doi.org/10.5267/j.ijdns.2022.8.013
  45. Hasanein AM, Sobaih AEE. Drivers and consequences of ChatGPT use in higher education: Key stakeholder perspectives. European Journal of Investigation in Health, Psychology and Education. 2023;13(11):2599-2614. https://doi.org/10.3390/ejihpe13110181
  46. Bilquise G, Ibrahim S, Salhieh SM. Investigating student acceptance of an academic advising chatbot in higher education institutions. Education and Information Technologies. 2024;29:6357-6382. https://doi.org/10.1007/s10639-023-12076-x
  47. Wang F, King RB, Chai ChS, Zhou Y. University students’ intentions to learn artificial intelligence: the roles of supportive environments and expectancy-value beliefs. International Journal of Educational Technology in Higher Education. 2023;20:51. https://doi.org/10.1186/s41239-023-00417-2
  48. Habibi A, Muhaimin M, Danibao BK, Wibowo YG, Wahyuni S, Octavia A. ChatGPT in higher education learning: Acceptance and use. Computers and Education: Artificial Intelligence. 2023;5:100190. https://doi.org/10.1016/j.caeai.2023.100190
  49. Strzelecki A. Students’ acceptance of ChatGPT in higher education: An extended unified theory of acceptance and use of technology. Innovative higher education. 2024;49:223-245. https://doi.org/10.1007/s10755-023-09686-1
  50. Raffaghelli JE, Rodríguez ME, Guerrero-Roldán A-E, Bañeres D. Applying the UTAUT model to explain the students’ acceptance of an early warning system in Higher Education. Computers & Education. 2022;182:104468. https://doi.org/ 10.1016/j.compedu.2022.104468
  51. Dakakni D, Safa N. Artificial intelligence in the L2 classroom: Implications and challenges on ethics and equity in higher education: A 21st century Pandora’s box. Computers and Education: Artificial Intelligence. 2023;5:100179. https://doi.org/10.1016/j.caeai.2023.100179
  52. Grájeda A, Burgos J, Córdova P, Sanjinés A. Assessing student-perceived impact of using artificial intelligence tools: Construction of a synthetic index of application in higher education. Cogent Education. 2024;11(1):2287917. https://doi.org/10.1080/2331186X.2023.2287917
  53. Chan CKY, Hu W. Students’ voices on generative AI: Perceptions, benefits, and challenges in higher education. International Journal of Educational Technology in Higher Education. 2023;20:43. https://doi.org/10.1186/s41239-023-00411-8
  54. Von Garrel J, Mayer J. Artificial Intelligence in studies - use of ChatGPT and AI-based tools among students in Germany. Humanities & Social Sciences Communications. 2023;10:799. https://doi.org/10.1057/s41599-023-02304-7
  55. Walter Y. Embracing the future of Artificial Intelligence in the classroom: the relevance of AI literacy, prompt engineering, and critical thinking in modern education. International Journal of Educational Technology in Higher Education. 2024;21:15. https://doi.org/10.1186/s41239-024-00448-3
  56. Kelly A, Sullivan M, Strampel K. Generative artificial intelligence: University student awareness, experience, and confidence in use across disciplines. Journal of University Teaching and Learning Practice. 2023;20(6). https://doi.org/10.53761/1.20.6.12
  57. Abbas N, Whitfield J, Atwell E, Bowman H, Pickard T, Walker A. Online chat and chatbots to enhance mature student engagement in higher education. International Journal of Lifelong Education. 2022;41(3):308-326. https://doi.org/10.1080/02601370.2022.2066213
  58. Abdaljaleel M, Barakat M, Alsanafi M, Salim NA, Abazid H, Malaeb D, et al. A multinational study on the factors influencing university students’ attitudes and usage of ChatGPT. Scientific Reports. 2024;14:1983. https://doi.org/10.1038/s41598-024-52549-8
  59. İçen M. The future of education utilizing artificial intelligence in Turkey. Humanities and Social Sciences Communications. 2022;9:268. https://doi.org/10.1057/s41599-022-01284-4
  60. Tapalova O, Zhiyenbayeva N. Artificial intelligence in education: AIEd for personalised learning pathways. Electronic Journal of e-Learning. 2022;20(5):639-653. https://doi.org/10.34190/ejel.20.5.2597
  61. Limna P, Kraiwanit T, Jangjarat K, Klayklung P, Chocksathaporn P. The use of ChatGPT in the digital era: Perspectives on chatbot implementation. Journal of Applied Learning and Teaching. 2023;6(1):64-74. https://doi.org/10.37074/jalt.2023.6.1.32
  62. Essel HB, Vlachopoulos D, Tachie-Menson A, Johnson EE, Baah PK. The impact of a virtual teaching assistant (chatbot) on students’ learning in Ghanaian higher education. International Journal of Educational Technology in Higher Education. 2022;19:57. https://doi.org/10.1186/s41239-022-00362-6
  63. Tossell CC, Tenhundfeld NL, Momen A, Cooley K, de Visser EJ. Student perceptions of ChatGPT use in a college essay assignment: Implications for learning, grading, and trust in artificial intelligence. IEEE Transactions on Learning Technologies. 2024;17:1069-1081. https://doi.org/10.1109/TLT.2024.3355015
  64. Boubker O. From chatting to self-educating: Can AI tools boost student learning outcomes? Expert Systems with Applications. 2024;238(A):121820. https://doi.org/10.1016/j.eswa.2023.121820
  65. Al-Abdullatif AM, Al-Dokhny AA, Drwish AM. Implementing the Bashayer chatbot in Saudi higher education: measuring the influence on students’ motivation and learning strategies. Frontiers in Psychology. 2023;14:1129070. https://doi.org/10.3389/fpsyg.2023.1129070
  66. Jaboob M, Hazaimeh M, Al-Ansi AM. Integration of generative AI techniques and applications in student behavior and cognitive achievement in Arab higher education. International Journal of Human-Computer Interaction. 2024;41(1):353-366. https://doi.org/10.1080/10447318.2023.2300016
  67. González LA, Neyem A, Contreras-McKay I, Molina D. Improving learning experiences in software engineering capstone courses using artificial intelligence virtual assistants. Computer Applications in Engineering Education. 2022;30(5):1370-1389. https://doi.org/10.1002/cae.22526
  68. Jin S-H, Im K, Yoo M, Roll I, Seo K. Supporting students’ self-regulated learning in online learning using artificial intelligence applications. International Journal of Educational Technology in Higher Education. 2023;20:37. https://doi.org/10.1186/s41239-023-00406-5
  69. Wang S, Sun Z, Chen Y. Effects of higher education institutes’ artificial intelligence capability on students’ self-efficacy, creativity and learning performance. Education and Information Technologies. 2023;28:4919-4939. https://doi.org/10.1007/s10639-022-11338-4
  70. Chaudhry IS, Sarwary SAM, El Refae GA, Chabchoub H. Time to revisit existing student’s performance evaluation approach in higher education sector in a new era of ChatGPT - A case study. Cogent Education. 2023;10(1):2210461. https://doi.org/10.1080/2331186X.2023.2210461
  71. Salinas-Navarro DE, Vilalta-Perdomo E, Michel-Villarreal R, Montesinos L. Using generative artificial intelligence tools to explain and enhance experiential learning for authentic assessment. Education Sciences. 2024;14(1):83. https://doi.org/10.3390/educsci14010083
  72. Michel-Villarreal R, Vilalta-Perdomo E, Salinas-Navarro DE, Thierry-Aguilera R, Gerardou FS. Challenges and opportunities of generative AI for higher education as explained by ChatGPT. Education Sciences. 2023;13(9):856. https://doi.org/10.3390/educsci13090856
  73. Breines MR, Gallagher M. A return to Teacherbot: rethinking the development of educational technology at the University of Edinburgh. Teaching in Higher Education. 2023;28(3):517-531. https://doi.org/10.1080/13562517.2020.1825373
  74. Ibrahim H, Liu F, Asim R, Battu B, Benabderrahmane S, Alhafni B, et al. Perception, performance, and detectability of conversational artificial intelligence across 32 university courses. Scientific Reports. 2023;13:12187. https://doi.org/10.1038/s41598-023-38964-3
  75. Clark TM. Investigating the use of an artificial intelligence chatbot with general chemistry exam questions. Journal of Chemical Education. 2023;100(5):1905-1916. https://doi.org/10.1021/acs.jchemed.3c00027
  76. Currie G, Singh C, Nelson T, Nabasenja C, Al-Hayek Y, Spuur K. ChatGPT in medical imaging higher education. Radiography. 2023;29(4):792-799. https://doi.org/10.1016/j.radi.2023.05.011

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».