Experimental models of tumor growth in soft tissue sarcomas

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

Soft tissue sarcomas are rare tumors (about 1 % of all malignant neoplasms) and include more than 70 histological subtypes, the pathogenetic features of which remain unclear. This is largely due to both quantity and volume of clinical material and high heterogeneity of the disease. Given the rarity and heterogeneity of each individual subtype of soft tissue sarcoma, there is an urgent need to develop universal model systems to understand the molecular changes that determine tumor biology. Such systems include CDX models (cell line-derived xenograft), created from cell lines, PDX (patient-derived xenograft), obtained from primary tumor/metastasis cells, both a whole fragment of surgical material and from a cell suspension; humanized animals containing various human immune cells, and GEM (genetically engineered mouse) models, which are created through transfection of genetic changes characteristic of different subtypes of soft tissue sarcomas. To create these systems, not only widely available mouse models are used, but also other animals, such as fish (Danio rerio) , rats, pigs, and dogs. Another important goal of using animal models is to screen the effectiveness of modern drugs. To date, treatment of various subtypes of soft tissue sarcomas is based on standard protocols of chemotherapy (doxorubicin, epirubicin, dacarbazine, ifosfamide) and surgical resection. In the case of inoperable forms or late stages of soft tissue sarcomas, animal models are a potential tool in predicting the effectiveness of therapy and personalized selection of treatment regimens. In this regard, studies of the mechanisms of targeted action on specific molecules and the use of humanized animals for the development of new approaches to immunotherapy are of particular relevance. The current review discusses animal model systems of the three most common types of soft tissue sarcomas: liposarcomas, undifferentiated pleomorphic and synovial sarcomas, as well as the use of these models to find new therapeutic solutions. Conclusion. Currently, PDX and GEM models are widely used to identify molecules and signaling pathways involved in the development of sarcomas, identify tumor-initiating cells, and assess the chemoresistance of known drugs and new drugs at the level of the entire tumor ecosystem. However, the key problems of animal models of soft tissue sarcomas remain changes in their composition and phenotype compared to the original tumor, poor survival of surgical material, and lack of cellular immunity in immunocompetent models, high cost, and the length of time it takes to create and maintain the model. A solution to one of the problems may be the use of humanized animals with PDX, which implies the presence in the model of immune, stromal and tumor components that are as close as possible to the human body.

Негізгі сөздер

Авторлар туралы

Mariia Tretyakova

RUDN University; Tomsk National Research Medical Center

Хат алмасуға жауапты Автор.
Email: trremar@mail.ru
ORCID iD: 0000-0002-5040-931X
SPIN-код: 5207-8330
Moscow, Russian Federation; Tomsk, Russian Federation

Ustinya Bokova

RUDN University; Tomsk National Research Medical Center

Email: trremar@mail.ru
ORCID iD: 0000-0003-2179-5685
SPIN-код: 3546-0527
Moscow, Russian Federation; Tomsk, Russian Federation

Anastasia Korobeynikova

RUDN University; Tomsk National Research Medical Center

Email: trremar@mail.ru
ORCID iD: 0000-0002-2633-9884
SPIN-код: 5523-8156
Moscow, Russian Federation; Tomsk, Russian Federation

Evgeny Denisov

RUDN University; Tomsk National Research Medical Center

Email: trremar@mail.ru
ORCID iD: 0000-0003-2923-9755
SPIN-код: 9498-5797
Moscow, Russian Federation; Tomsk, Russian Federation

Әдебиет тізімі

  1. Dodd RD, Mito JK, Kirsch DG. Animal models of soft-tissue sarcoma. Dis Model Mech. 2010;3(9-10):557-66. doi: 10.1242/dmm.005223
  2. Birdi HK, Jirovec A, Cortés-Kaplan S, Werier J, Nessim C, Diallo JS, Ardolino M. Immunotherapy for sarcomas: new frontiers and unveiled opportunities. J Immunother Cancer. 2021;9(2). doi: 10.1136/jitc-2020-001580
  3. Tentler JJ, Tan AC, Weekes CD, Jimeno A, Leong S, Pitts TM, Arcaroli JJ, Messersmith WA, Eckhardt SG. Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol. 2012;9(6):338-50. doi: 10.1038/nrclinonc.2012.61
  4. Zhou Y, Tozzi F, Chen J, Fan F, Xia L, Wang J, Gao G, Zhang A, Xia X, Brasher H, Widger W, Ellis LM, Weihua Z. Intracellular ATP levels are a pivotal determinant of chemoresistance in colon cancer cells. Cancer Res. 2012;72(1):304-14. doi: 10.1158/0008-5472.can-11-1674
  5. Choi SYC, Ribeiro CF, Wang Y, Loda M, Plymate SR, Uo T. Druggable Metabolic Vulnerabilities Are Exposed and Masked during Progression to Castration Resistant Prostate Cancer. Biomolecules. 2022;12(11):1590. doi: 10.3390/biom12111590
  6. Pauli C, Hopkins BD, Prandi D, Shaw R, Fedrizzi T, Sboner A, Sailer V, Augello M, Puca L, Rosati R, McNary TJ, Churakova Y, Cheung C, Triscott J, Pisapia D, Rao R, Mosquera JM, Robinson B, Faltas BM, Emerling BE, Gadi VK, Bernard B, Elemento O, Beltran H, Demichelis F, Kemp CJ, Grandori C, Cantley LC, Rubin MA. Personalized In Vitro and In Vivo Cancer Models to Guide Precision Medicine. Cancer Discovery. 2017;7(5):462-477. doi: 10.1158/2159-8290.cd-16-1154
  7. Chen J, Liao S, Xiao Z, Pan Q, Wang X, Shen K, Wang S, Yang L, Guo F, Liu HF, Pan Q. The development and improvement of immunodeficient mice and humanized immune system mouse models. Front Immunol. 2022;13:1007579. doi: 10.3389/fimmu.2022.1007579
  8. Jung HY, Kim TH, Lee JE, Kim HK, Cho JH, Choi YS, Shin S, Lee SH, Rhee H, Lee HK, Choi HJ, Jang HY, Lee S, Kang JH, Choi YA, Lee S, Lee J, Choi Y, Kim J. PDX models of human lung squamous cell carcinoma: consideration of factors in preclinical and co-clinical applications. J Transl Med. 2020;18(1):307. doi: 10.1186/s12967-020-02473-y
  9. Katsiampoura A, Raghav K, Jiang ZQ, Menter DG, Varkaris A, Morelli MP, Manuel S, Wu J, Sorokin AV, Rizi BS, Bristow C, Tian F, Airhart S, Cheng M, Broom BM, Morris J, Overman MJ, Powis G, Kopetz S. Modeling of Patient-Derived Xenografts in Colorectal Cancer. Mol Cancer Ther. 2017;16(7):1435-1442. doi: 10.1158/1535-7163.mct-16-0721
  10. White R, Rose K, Zon L. Zebrafish cancer: the state of the art and the path forward. Nat Rev Cancer. 2013;13(9):624-36. doi:10.1038/ nrc3589
  11. Bao Y, Hua B, Hou W, Shi Z, Li W, Li C, Chen C, Liu R, Qin Y. Involvement of Protease-Activated Receptor 2 in Nociceptive Behavior in a Rat Model of Bone Cancer. Journal of Molecular Neuroscience. 2014;52(4):566-576. doi: 10.1007/s12031-013-0112-7
  12. Meurens F, Summerfield A, Nauwynck H, Saif L, Gerdts V. The pig: a model for human infectious diseases. Trends in Microbiology. 2012;20(1):50-57. doi: 10.1016/j.tim.2011.11.002
  13. Brown DC, Agnello K, Iadarola MJ. Intrathecal resiniferatoxin in a dog model: efficacy in bone cancer pain. Pain. 2015;156(6):1018- 1024. doi: 10.1097/j.pain.0000000000000115
  14. Salawu A, Fernando M, Hughes D, Reed MW, Woll P, Greaves C, Day C, Alhajimohammed M, Sisley K. Establishment and molecular characterisation of seven novel soft-tissue sarcoma cell lines. Br J Cancer. 2016;115(9):1058-1068. doi: 10.1038/bjc.2016.259
  15. Muff R, Botter SM, Husmann K, Tchinda J, Selvam P, Seeli-Maduz F, Fuchs B. Explant culture of sarcoma patients’ tissue. Laboratory Investigation. 2016;96(7):752-762. doi:10.1038/ labinvest.2016.49
  16. Cree IA, Glaysher S, Harvey AL. Efficacy of anti-cancer agents in cell lines versus human primary tumour tissue. Curr Opin Pharmacol. 2010;10(4):375-9. doi: 10.1016/j.coph.2010.05.001
  17. Colella G, Fazioli F, Gallo M, De Chiara A, Apice G, Ruosi C, Cimmino A, de Nigris F. Sarcoma Spheroids and Organoids-Promising Tools in the Era of Personalized Medicine. Int J Mol Sci. 2018;19(2). doi: 10.3390/ijms19020615
  18. Wakamatsu T, Ogawa H, Yoshida K, Matsuoka Y, Shizuma K, Imura Y, Tamiya H, Nakai S, Yagi T, Nagata S, Yui Y, Sasagawa S, Takenaka S. Establishment of Organoids From Human Epithelioid Sarcoma With the Air-Liquid Interface Organoid Cultures. Frontiers in Oncology. 2022;12. doi: 10.3389/fonc.2022.893592
  19. Imle R, Kommoss FKF, Banito A. Preclinical In Vivo Modeling of Pediatric Sarcoma-Promises and Limitations. J Clin Med. 2021;10(8). doi: 10.3390/jcm10081578
  20. Langenau DM, Sweet-Cordero A, Wechsler-Reya RJ, Dyer MA. Preclinical Models Provide Scientific Justification and Translational Relevance for Moving Novel Therapeutics into Clinical Trials for Pediatric Cancer. Cancer Research. 2015; 75(24):5176-5186. doi: 10.1158/0008-5472.CAN-15-1308
  21. Camboni M, Hammond S, Martin LT, Martin PT. Induction of a regenerative microenvironment in skeletal muscle is sufficient to induce embryonal rhabdomyosarcoma in p53-deficient mice. J Pathol. 2012;226(1):40-9. doi: 10.1002/path.2996
  22. DuPage M, Jacks T. Genetically engineered mouse models of cancer reveal new insights about the antitumor immune response. Curr Opin Immunol. 2013;25(2):192-9. doi: 10.1016/j.coi.2013.02.005
  23. Bill KL, Casadei L, Prudner BC, Iwenofu H, Strohecker AM, Pollock RE. Liposarcoma: molecular targets and therapeutic implications. Cell Mol Life Sci. 2016; 73(19):3711-8. doi: 10.1007/s00018-016-2266-2
  24. Thway K. Well-differentiated liposarcoma and dedifferentiated liposarcoma: An updated review. Semin Diagn Pathol. 2019;36(2):112- 121. doi: 10.1053/j.semdp.2019.02.006
  25. Codenotti S, Mansoury W, Pinardi L, Monti E, Marampon F, Fanzani A. Animal models of well-differentiated/dedifferentiated liposarcoma: utility and limitations. Onco Targets Ther. 2019;12:5257-5268. doi: 10.2147/ott.s175710
  26. Xie Fa, Qin D, Lian L, Li M, Kong X, Xia X, Huang L, Chen J, Yu C, Luo C, Li W. Establishment of a New Orthotopic Perirenal- Space-Grafted Mouse Model of Retroperitoneal Sarcoma. Book Establishment of a New Orthotopic Perirenal-Space-Grafted Mouse Model of Retroperitoneal Sarcoma. EditorResearch Square. 2020. doi: 10.21203/rs.3.rs-89811/v1
  27. Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ. Efficient tumour formation by single human melanoma cells. Nature. 2008;456(7222):593-598. doi: 10.1038/nature07567
  28. Stebbing J, Paz K, Schwartz GK, Wexler LH, Maki R, Pollock RE, Morris R, Cohen R, Shankar A, Blackman G, Harding V, Vasquez D, Krell J, Zacharoulis S, Ciznadija D, Katz A, Sidransky D. Patient-derived xenografts for individualized care in advanced sarcoma. Cancer. 2014;120(13):2006-15. doi: 10.1002/cncr.28696
  29. Benites BM, Miranda-Silva W, Fonseca FP, Oliveira C, Fregnani ER. Undifferentiated pleomorphic sarcoma of the mandible. J Korean Assoc Oral Maxillofac Surg. 2020;46(4):282-287. doi: 10.5125/jkaoms.2020.46.4.282
  30. Steele CD, Tarabichi M, Oukrif D, Webster AP, Ye H, Fittall M, Lombard P, Martincorena I, Tarpey PS, Collord G, Haase K, Strauss SJ, Berisha F, Vaikkinen H, Dhami P, Jansen M, Behjati S, Amary MF, Tirabosco R, Feber A, Campbell PJ, Alexandrov LB, Van Loo P, Flanagan AM, Pillay N. Undifferentiated Sarcomas Develop through Distinct Evolutionary Pathways. Cancer Cell. 2019;35(3):441-456. e8. doi: 10.1016/j.ccell.2019.02.002
  31. Kim J, Kim JH, Kang HG, Park SY, Yu JY, Lee EY, Oh SE, Kim YH, Yun T, Park C, Cho SY, You HJ. Integrated molecular characterization of adult soft tissue sarcoma for therapeutic targets. BMC Med Genet. 2018;19(1):216. doi: 10.1186/s12881-018-0722-6
  32. Bui NQ, Przybyl J, Trabucco SE, Frampton G, Hastie T, van de Rijn M, Ganjoo KN. A clinico-genomic analysis of soft tissue sarcoma patients reveals CDKN2A deletion as a biomarker for poor prognosis. Clin Sarcoma Res. 2019;9:12. doi: 10.1186/s13569-019-0122-5
  33. Bhalla AD, Landers SM, Singh AK, Landry JP, Yeagley MG, Myerson GSB, Delgado-Baez CB, Dunnand S, Nguyen T, Ma X, Bolshakov S, Menegaz BA, Lamhamedi-Cherradi S-E, Mao X, Song X, Lazar AJ, McCutcheon IE, Slopis JM, Ludwig JA, Lev DC, Rai K, Torres KE. Experimental models of undifferentiated pleomorphic sarcoma and malignant peripheral nerve sheath tumor. Laboratory Investigation. 2022;102(6):658-666. doi: 10.1038/s41374-022-00734-6
  34. Becker M, Graf C, Tonak M, Radsak MP, Bopp T, Bals R, Bohle RM, Theobald M, Rommens PM, Proschek D, Wehler TC. Xenograft models for undifferentiated pleomorphic sarcoma not otherwise specified are essential for preclinical testing of therapeutic agents. Oncol Lett. 2016;12(2):1257-1264. doi: 10.3892/ol.2016.4784
  35. Nishio J, Iwasaki H, Nabeshima K, Ishiguro M, Isayama T, Naito M. Establishment of a new human pleomorphic malignant fibrous histiocytoma cell line, FU-MFH-2: molecular cytogenetic characterization by multicolor fluorescence in situ hybridization and comparative genomic hybridization. Journal of Experimental & Clinical Cancer Research. 2010;29(1):153. doi: 10.1186/1756-9966-29-153
  36. Lee EY, Kim YH, Rayhan MA, Kang HG, Kim JH, Park JW, Park SY, Lee SH, You HJ. New established cell lines from undifferentiated pleomorphic sarcoma for in vivo study. BMB Rep. 2023;56(4):258-264. doi: 10.5483/BMBRep.2022-0209
  37. Tilkorn DJ, Stricker I, Hauser J, Ring A, Schmitz I, Steinstraesser L, Steinau HU, Daigeler A, Al-Benna S. Experimental murine model of primary high grade undifferentiated pleomorphic sarcoma not otherwise specified. In Vivo. 2012;26(4): P. 559-63
  38. Kiyuna T, Murakami T, Tome Y, Igarashi K, Kawaguchi K, Russell T, Eckardt MA, Crompton J, Singh A, Bernthal N, Bukata S, Federman N, Kanaya F, Eilber FC, Hoffman RM. Labeling the Stroma of a Patient-Derived Orthotopic Xenograft (PDOX) Mouse Model of Undifferentiated Pleomorphic Soft-Tissue Sarcoma With Red Fluorescent Protein for Rapid Non-Invasive Imaging for Drug Screening. J Cell Biochem. 2017;118(2):361-365. doi: 10.1002/jcb.25643
  39. Huang J, Chen M, Whitley MJ, Kuo H-C, Xu ES, Walens A, Mowery YM, Van Mater D, Eward WC, Cardona DM, Luo L, Ma Y, Lopez OM, Nelson CE, Robinson-Hamm JN, Reddy A, Dave SS, Gersbach CA, Dodd RD, Kirsch DG. Generation and comparison of CRISPR-Cas9 and Cre-mediated genetically engineered mouse models of sarcoma. Nature Communications. 2017;8(1):15999. doi: 10.1038/ncomms15999
  40. Barrott JJ, Kafchinski LA, Jin H, Potter JW, Kannan SD, Kennedy R, Mosbruger T, Wang W-L, Tsai J-W, Araujo DM, Liu T, Capecchi MR, Lazar AJ, Jones KB. Modeling synovial sarcoma metastasis in the mouse: PI3′-lipid signaling and inflammation. Journal of Experimental Medicine. 2016;213(13):2989-3005. doi: 10.1084/jem.20160817
  41. Nielsen TO, Poulin NM, Ladanyi M. Synovial Sarcoma: Recent Discoveries as a Roadmap to New Avenues for Therapy. Cancer Discovery.2015;5(2):124-134. doi: 10.1158/2159-8290.cd-14-1246
  42. El Beaino M, Araujo DM, Lazar AJ, Lin PP. Synovial Sarcoma: Advances in Diagnosis and Treatment Identification of New Biologic Targets to Improve Multimodal Therapy. Annals of Surgical Oncology. 2017;24(8):2145-2154. doi: 10.1245/s10434-017-5855-x
  43. Haldar M, Randall RL, Capecchi MR. Synovial sarcoma: from genetics to genetic-based animal modeling. Clin Orthop Relat Res. 2008;466(9):2156-67. doi: 10.1007/s11999-008-0340-2
  44. Steinstraesser L, Hauk J, Jacobsen F, Stricker I, Steinau HU, Al-Benna S. Establishment of a synovial sarcoma model in athymic nude mice. In Vivo. 2011;25 (2):165-9
  45. Cornillie J, Wozniak A, Li H, Wang Y, Boeckx B, Gebreyohannes YK, Wellens J, Vanleeuw U, Hompes D, Stas M, Sinnaeve F, Wafa H, Lambrechts D, Debiec-Rychter M, Sciot R, Schöffski P. Establishment and Characterization of Histologically and Molecularly Stable Soft-tissue Sarcoma Xenograft Models for Biological Studies and Preclinical Drug Testing. Mol Cancer Ther. 2019;18 (6):1168-1178. doi: 10.1158/1535-7163.mct-18-1045
  46. Isfort I, Cyra M, Elges S, Kailayangiri S, Altvater B, Rossig C, Steinestel K, Grünewald I, Huss S, Eßeling E, Mikesch JH, Hafner S, Simmet T, Wozniak A, Schöffski P, Larsson O, Wardelmann E, Trautmann M, Hartmann W. SS18-SSX-Dependent YAP/TAZ Signaling in Synovial Sarcoma. Clin Cancer Res. 2019;25 (12):3718-3731. doi: 10.1158/1078-0432.ccr-17-3553
  47. Kawano S, Grassian AR, Tsuda M, Knutson SK, Warholic NM, Kuznetsov G, Xu S, Xiao Y, Pollock RM, Smith JS, Kuntz KK, Ribich S, Minoshima Y, Matsui J, Copeland RA, Tanaka S, Keilhack H. Preclinical Evidence of Anti-Tumor Activity Induced by EZH2 Inhibition in Human Models of Synovial Sarcoma. PLoS One. 2016;11(7): e0158888. doi: 10.1371/journal.pone.0158888
  48. Xu H, Zheng H, Zhang Q, Song H, Wang Q, Xiao J, Dong Y, Shen Z, Wang S, Wu S, Wei Y, Lu W, Zhu Y, Niu X. A Multicentre Clinical Study of Sarcoma Personalised Treatment Using Patient- Derived Tumour Xenografts. Clinical Oncology. 2023;35(1): e48-e59. doi: 10.1016/j.clon.2022.06.002
  49. Haldar M, Hedberg ML, Hockin MF, Capecchi MR. A CreER-based random induction strategy for modeling translocation-associated sarcomas in mice. Cancer Res. 2009;69(8):3657-64. doi: 10.1158/0008-5472.can-08-4127
  50. Haldar M, Hancock JD, Coffin CM, Lessnick SL, Capecchi MR. A conditional mouse model of synovial sarcoma: insights into a myogenic origin. Cancer Cell. 2007;11(4):375-88. doi: 10.1016/j.ccr.2007.01.016
  51. Landuzzi L, Ruzzi F, Lollini PL, Scotlandi K. Synovial Sarcoma Preclinical Modeling: Integrating Transgenic Mouse Models and Patient-Derived Models for Translational Research. Cancers (Basel).2023;15(3). doi: 10.3390/cancers15030588
  52. Teng HW, Wang HW, Chen WM, Chao TC, Hsieh YY, Hsih CH, Tzeng CH, Chen PC, Yen CC. Prevalence and prognostic influence of genomic changes of EGFR pathway markers in synovial sarcoma. J Surg Oncol. 2011;103(8):773-81. doi: 10.1002/jso.21852
  53. Higuchi T, Kawaguchi K, Miyake K, Oshiro H, Zhang Z, Razmjooei S, Wangsiricharoen S, Igarashi K, Yamamoto N, Hayashi K, Kimura H, Miwa S, Nelson SD, Dry SM, Li Y, Chawla SP, Eilber FC, Singh SR, Tsuchiya H, Hoffman RM. The combination of gemcitabine and nab-paclitaxel as a novel effective treatment strategy for undifferentiated soft-tissue sarcoma in a patient-derived orthotopic xenograft (PDOX) nude-mouse model. Biomedicine & Pharmacotherapy. 2019;111:835-840. doi: 10.1016/j.biopha.2018.12.110
  54. Italiano A, Mathoulin-Pelissier S, Cesne AL, Terrier P, Bonvalot S, Collin F, Michels JJ, Blay JY, Coindre JM, Bui B. Trends in survival for patients with metastatic soft tissue sarcoma. Cancer. 2011;117(5):1049-1054. doi: 10.1002/cncr.25538
  55. Igarashi K, Kawaguchi K, Murakami T, Miyake K, Kiyuna T, Miyake M, Hiroshima Y, Higuchi T, Oshiro H, Nelson SD. Patient-derived orthotopic xenograft models of sarcoma. Cancer Letters. 2020;469:332-339. doi: 10.3389/fonc.2022.957844
  56. Kawaguchi K, Igarashi K, Miyake K, Kiyuna T, Miyake M, Singh AS, Chmielowski B, Nelson SD, Russell TA, Dry SM. Patterns of sensitivity to a panel of drugs are highly individualised for undifferentiated/unclassified soft tissue sarcoma (USTS) in patient-derived orthotopic xenograft (PDOX) nude-mouse models. Journal of Drug Targeting. 2019;27(2):211-216.
  57. Igarashi K, Kawaguchi K, Kiyuna T, Miyake K, Miyaki M, Yamamoto N, Hayashi K, Kimura H, Miwa S, Higuchi T, Singh AS, Chmielowski B, Nelson SD, Russell TA, Eckardt MA, Dry SM, Li Y, Singh SR, Chawla SP, Eilber FC, Tsuchiya H, Hoffman RM. Metabolic targeting with recombinant methioninase combined with palbociclib regresses a doxorubicin-resistant dedifferentiated liposarcoma. Biochem Biophys Res Commun. 2018;506(4):912-917. doi: 10.1016/jbbrc.2018.10.119
  58. Scheer M, Blank B, Bauer S, Vokuhl C, Stegmaier S, Feuchtgruber S, Henssen A, Sparber-Sauer M, Eggert A, Handgretinger R. Synovial sarcoma disease characteristics and primary tumor sites differ between patient age groups: a report of the Cooperative Weichteilsarkom Studiengruppe (CWS). Journal of cancer research and clinical oncology. 2020;146:953-960. doi: 10.1007/s00432-019-03121-9
  59. Zeng J, Zhang J, Sun Y, Wang J, Ren C, Banerjee S, Ouyang L, Wang Y. Targeting EZH2 for cancer therapy: From current progress to novel strategies. European Journal of Medicinal Chemistry. 2022;238:114419. doi: 10.1016/j.ejmech.2022.114419
  60. Choi B, Lee JS, Kim SJ, Hong D, Park JB, Lee K-Y. Anti-tumor effects of anti-PD-1 antibody, pembrolizumab, in humanized NSG PDX mice xenografted with dedifferentiated liposarcoma. Cancer letters. 2020;478:56-69. doi: 10.1016/j.canlet.2020.02.042
  61. Zhong Y, Ma Z, Wang F, Wang X, Yang Y, Liu Y, Zhao X, Li J, Du H, Zhang M. In vivo molecular imaging for immunotherapy using ultra-bright near-infrared-IIb rare-earth nanoparticles. Nature biotechnology. 2019;37(11):1322-1331. doi: 10.1038/s41587-019-0262-4
  62. Tawbi HA, Burgess M, Bolejack V, Van Tine BA, Schuetze SM, Hu J, D’Angelo S, Attia S, Riedel RF, Priebat DA, Movva S, Davis LE, Okuno SH, Reed DR, Crowley J, Butterfield LH, Salazar R, Rodriguez-Canales J, Lazar AJ, Wistuba, II, Baker LH, Maki RG, Reinke D, Patel S. Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): a multicentre, two-cohort, single-arm, open-label, phase 2 trial. Lancet Oncol. 2017;18(11):1493-1501. doi: 10.1016/s1470-2045(17)30624-1
  63. Lee A, Huang P, DeMatteo RP, Pollack SM. Immunotherapy for soft tissue sarcoma: tomorrow is only a day away. American Society of Clinical Oncology Educational Book. 2016;36:281-290. doi: 10.1200/EDBK_157439
  64. Ruger L, Yang E, Coutermarsh-Ott S, Vickers E, Gannon J, Nightengale M, Hsueh A, Ciepluch B, Dervisis N, Vlaisavljevich E. Histotripsy ablation for the treatment of feline injection site sarcomas: a first-in-cat in vivo feasibility study. International Journal of Hyperthermia. 2023;40(1):2210272. doi:1 0.1080/02656736.2023.2210272
  65. Ruger L, Yang E, Gannon J, Sheppard H, Coutermarsh-Ott S, Ziemlewicz TJ, Dervisis N, Allen IC, Daniel GB, Tuohy J. Mechanical high-intensity focused ultrasound (histotripsy) in dogs with spontaneously occurring soft tissue sarcomas. IEEE Transactions on Biomedical Engineering. 2022;70(3):768-779. doi: 10.1109/TBME.2022.3201709
  66. Papalexis N, Savarese LG, Peta G, Errani C, Tuzzato G, Spinnato P, Ponti F, Miceli M, Facchini G. The New Ice Age of Musculoskeletal Intervention: Role of Percutaneous Cryoablation in Bone and Soft Tissue Tumors. Current Oncology. 2023;30(7):6744-6770. doi: 10.3390/curroncol30070495
  67. Tap WD, Jones RL, Van Tine BA, Chmielowski B, Elias AD, Adkins D, Agulnik M, Cooney MM, Livingston MB, Pennock G. Olaratumab and doxorubicin versus doxorubicin alone for treatment of soft-tissue sarcoma: an open-label phase 1b and randomised phase 2 trial. The Lancet. 2016;388(10043):488-497. doi:0.1016/S0140-6736(16)30587-6
  68. Tap WD, Wagner AJ, Schöffski P, Martin-Broto J, Krarup- Hansen A, Ganjoo KN, Yen C-C, Razak ARA, Spira A, Kawai A. Effect of doxorubicin plus olaratumab vs doxorubicin plus placebo on survival in patients with advanced soft tissue sarcomas: the ANNOUNCE randomized clinical trial. Jama. 2020;323(13):1266-1276. doi: 10.1001/jama.2020.1707

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».