Distribution of β-amyloid and pTau in brain cortex depending on age and mental state

Cover Page

Cite item

Full Text

Abstract

Relevance. Alzheimer’s disease (AD) is the most cause of disability and dementia, which is the 7th leading cause of death worldwide. Diagnosis of AD includes detection of amyloid plaques and hyperphosphorylated tau protein (pTau) in the brain. However, in recent years the amyloid hypothesis of AD development has been criticized and revised, and a growing pool of data emerges indicating more complex pathogenetic mechanisms leading to neurodegeneration in AD. The aim of our work was to evaluate the presence and distribution of amyloid plaques and pTau fragments in different regions of the cerebral cortex in patients > 60 years old with diagnosed dementia and without cognitive impairment, as well as in people < 60 years old. Materials and Methods. The amount of β-amyloid and pTau fragments in three groups of patients was measured on IHC stained histological sections in the regions of parahippocampal, temporal, and occipital cortex. Results and Discussion. Amyloid plaques were detected in all patients over 60 years of age (with and without dementia), while in younger individuals 60 years of age they were found in 66% of cases. The largest amyloid-β burden was observed in the occipital cortex. pTau was detected in all cortical areas in the three groups of patients. Also, the amount of pTau was higher in the occipital cortex in patients over 60 years of age both with and without dementia than in the group of people under 60 years of age. Conclusion. Thus, accumulation of pTau occurs earlier than β-amyloid. The amount of pTau was higher in patients over 60 years of age with clinically manifested dementia, while in some regions the amount of amyloid conglomerates is higher in cognitively intact patients. The findings point to much more complex mechanisms of the neurodegenerative diseases development with the formation of amyloid plaques being a consequence rather than cause of the disease.

About the authors

Alexandra V. Sentyabreva

Avtsyn Research Institute of Human Morphology of “Petrovsky National Research Centre of Surgery”; RUDN University

Author for correspondence.
Email: alexandraasentyabreva@gmail.com
ORCID iD: 0000-0001-5064-219X
SPIN-code: 6966-9959
Moscow, Russian Federation

Olyesya A. Vasyukova

Avtsyn Research Institute of Human Morphology of “Petrovsky National Research Centre of Surgery”

Email: alexandraasentyabreva@gmail.com
ORCID iD: 0000-0001-6068-7009
SPIN-code: 2242-0958
Moscow, Russian Federation

Yana A. Zorkina

Alekseev Psychiatric Clinical Hospital No. 1; Serbsky National Medical Research Center for Psychiatry and Narcology

Email: alexandraasentyabreva@gmail.com
ORCID iD: 0000-0003-0247-2717
SPIN-code: 3017-3328
Moscow, Russian Federation

Alisa V. Andryuschenko

Alekseev Psychiatric Clinical Hospital No. 1; Lomonosov Moscow State University

Email: alexandraasentyabreva@gmail.com
ORCID iD: 0000-0002-7702-6343
SPIN-code: 8864-3341
Moscow, Russian Federation

Georgy P. Kostyuk

Alekseev Psychiatric Clinical Hospital No. 1; Russian Biotechnological University (ROSBIOTECH); Sklifosovsky Institute of Clinical Medicine, Sechenov University

Email: alexandraasentyabreva@gmail.com
ORCID iD: 0000-0002-3073-6305
SPIN-code: 3424-4544
Moscow, Russian Federation

Irina Z. Eremina

RUDN University

Email: alexandraasentyabreva@gmail.com
ORCID iD: 0000-0002-5093-6232
SPIN-code: 5819-6159
Moscow, Russian Federation

Anna M. Kosyreva

Avtsyn Research Institute of Human Morphology of “Petrovsky National Research Centre of Surgery”; RUDN University

Email: alexandraasentyabreva@gmail.com
ORCID iD: 0000-0002-6182-1799
SPIN-code: 5421-5520
Moscow, Russian Federation

References

  1. The top 10 causes of death. WHO. 2020. Available at: https://www.who.int/news-room/fact-sheets/detail/the-top‑10‑causes-of-death [Accessed on 2024 February 12].
  2. Federal Law of 21.11.2011 № 323-FZ “On the basis of the healthcare of citizens in the Russian Federation” (in Russian).
  3. Vatolina M. The problems of evaluation of mortality of Alzheimer’s disease in Russia. Zdravookhraneniye Rossiyskoy Federatsii. 2015;59(4):20—24. (in Russian).
  4. Haque SS. Biomarkers in the diagnosis of neurodegenerative diseases. RUDN Journal of Medicine. 2022;26(4):431—440. doi: 10.22363/2313-0245-2022-26-4-431-440
  5. Vasenina E, Levin O, Sonin A. Modern trends in epidemiology of dementia and management of patients with cognitive impairment. Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova. 2017;117(6—2):87—95. (in Russian).
  6. Tkacheva ON, Yakhno NN, Neznanov NG, Levin OS, Gusev EI. Cognitive disorders in elderly and senile people. Clinical recommendations. M., 2020. 317 p. (in Russian).
  7. Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science. 1992;256(5054):184—185. doi: 10.1126/science.1566067
  8. Hyman BT, Phelps CH, Beach TG, et al. National Institute on Aging-­Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimer’s & dementia: the journal of the Alzheimer’s Association. 2012;8(1):1—13. doi: 10.1016/j.jalz.2011.10.007
  9. Whittington A, Sharp DJ, Gunn RN; Alzheimer’s Disease Neuroimaging Initiative. Spatiotemporal Distribution of β-­Amyloid in Alzheimer Disease Is the Result of Heterogeneous Regional Carrying Capacities. Journal of Nuclear Medicine. 2018;59(5):822—827. doi: 10.2967/jnumed.117.194720
  10. Braak H, Braak E. Neuropathological stageing of Alzheimer-­related changes. Acta Neuropathologica. 1991;82(4):239—259. doi: 10.1007/BF00308809
  11. Thal DR, Rüb U, Orantes M, Braak H. Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology. 2002;58(12):1791—1800. doi: 10.1212/wnl.58.12.1791
  12. Braak H, Thal DR, Ghebremedhin E, Del Tredici K. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. Journal of Neuropathology & Experimental Neurology. 2011;70(11):960—969. doi: 10.1097/NEN.0b013e318232a379
  13. Braak H, Del Tredici K. The pathological process underlying Alzheimer’s disease in individuals under thirty. Acta Neuropathologica. 2011;121(2):171—181. doi: 10.1007/s00401-010-0789-4
  14. Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. The journals of gerontology. Series A, Biological sciences and medical sciences. 2014;69 Suppl 1: S4-S9. doi: 10.1093/gerona/glu057
  15. Dementia. WHO. 2023. Available at: https://www.who.int/news-room/fact-sheets/detail/dementia. [Accessed 2024 March 2].
  16. Kosyreva AM, Sentyabreva AV, Tsvetkov IS, Makarova OV. Alzheimer’s Disease and Inflammaging. Brain Science. 2022;12(9):1237. doi: 10.3390/brainsci12091237
  17. Müller N. Inflammation in Schizophrenia: Pathogenetic Aspects and Therapeutic Considerations. Schizophrenia Bulletin. 2018;44(5):973—982. doi: 10.1093/schbul/sby024

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).