Magnetic field application in bone tissue regeneration: issue current status and prospects for method development
- Authors: Muraev A.A.1, Manukyan G.G.1, Salekh K.M.1, Bonartsev A.P.2, Volkov A.V.1
-
Affiliations:
- RUDN University
- Lomonosov Moscow State University
- Issue: Vol 28, No 1 (2024): DENTISTRY
- Pages: 9-22
- Section: Stomatology
- URL: https://journal-vniispk.ru/2313-0245/article/view/319768
- DOI: https://doi.org/10.22363/2313-0245-2024-28-1-9-22
- EDN: https://elibrary.ru/TMYOTY
- ID: 319768
Cite item
Full Text
Abstract
Relevance. Magnets have long been used to treat various diseases, especially in inflammatory processes. According to existing historical data, magnetotherapy was already used in ancient times by the Chinese, Egyptians and Greeks. Different magnetic field strengths affect cells in different ways, with medium-strength magnetic fields being the most widely used. The review presents a brief history and current state of the issue of using a magnetic field in bone tissue regeneration. Modern knowledge about the mechanisms of physiological and reparative regeneration, restoration of bone tissue is clarified, and modern areas of bone tissue engineering are considered, taking into account the characteristics of microcirculation and the effect of a magnetic field on the physiology of bone tissue and reparative regeneration. One of the key findings of the review is that the magnetic field improves bone tissue repair by influencing the metabolic behavior of cells. Studies show that magnetotherapy promotes the activation of cellular processes, accelerates the formation of new bone tissue and improves its quality. It is also noted that the magnetic field has a positive effect on microcirculation, improving the blood supply to tissues and facilitating a better supply of nutrients to the site of injury. This contributes to faster wound healing and early rehabilitation of patients. Conclusion. Magnetotherapy is one of the effective physical and rehabilitation methods of treatment that will become increasingly important in modern medicine. However, further research is needed to better understand the mechanisms of action of a magnetic field on bone tissue and to determine the optimal parameters for its application.
About the authors
Alexandr A. Muraev
RUDN University
Email: ms.s.karina@mail.ru
ORCID iD: 0000-0003-3982-5512
Moscow, Russian Federation
George G. Manukyan
RUDN University
Email: ms.s.karina@mail.ru
ORCID iD: 0009-0007-8636-994X
Moscow, Russian Federation
Karina M. Salekh
RUDN University
Email: ms.s.karina@mail.ru
ORCID iD: 0000-0003-4415-766X
Moscow, Russian Federation
Anton P. Bonartsev
Lomonosov Moscow State University
Email: ms.s.karina@mail.ru
ORCID iD: 0000-0001-5894-9524
Moscow, Russian Federation
Alexey V. Volkov
RUDN University
Author for correspondence.
Email: ms.s.karina@mail.ru
ORCID iD: 0000-0002-5611-3990
Moscow, Russian Federation
References
- Gilbert W. De Magnete. Dover Publication Inc.: New York, NY, USA, 1958.
- Von Middendorff AT. Die Isepiptesen Russlands. Kaiserlichen Akademie der Wissenschaften: St. Petersburg, Russia, 1855.
- Schott H. Zur Geschichte der Elektrotherapie und ihrer Beziehung zum Heilmagnetismus. In Naturheilverfahren und Unkonventionelle Medizinische Richtunge. Springer: Berlin/Heidelberg, Germany, 1996.
- Talantov PV. Evidence-based medicine from magic to the search for immortality. AST Publishing House: CORPUS. 2019. 560 p. (In Russian).
- Pajarinen J, Lin T, Gibon E, Kohno Y, Maruyama M, Nathan K, Lu L, Yao Z, Goodman SB. Mesenchymal stem cell-macrophage crosstalk and bone healing. Biomaterials. 2019;196:80-89. doi: 10.1016/j.biomaterials.2017.12.025
- Diomede F, Marconi GD, Fonticoli L, Pizzicanella J, Merciaro I, Bramanti P, Mazzon E, Trubiani O. Functional Relationship between Osteogenesis and Angiogenesis in Tissue Regeneration. Int J Mol Sci. 2020;21(9):3242. doi: 10.3390/ijms21093242
- Massari L, Benazzo F, Falez F, Perugia D, Pietrogrande L, Setti S, Osti R, Vaienti E, Ruosi C, Cadossi R. Biophysical stimulation of bone and cartilage: state of the art and future perspectives. Int Orthop. 2019;43(3):539-551. doi: 10.1007/s00264-018-4274-3
- Majidinia M, Sadeghpour A, Yousefi B. The roles of signaling pathways in bone repair and regeneration. J Cell Physiol. 2018;233(4):2937-2948. doi: 10.1002/jcp.26042
- Shang F, Yu Y, Liu S, Ming L, Zhang Y, Zhou Z, Zhao J, Jin Y. Advancing application of mesenchymal stem cell-based bone tissue regeneration. Bioact Mater. 2020;6(3):666-683. doi: 10.1016/j.bioactmat.2020.08.014
- Zhang S, Li X, Qi Y, Ma X, Qiao S, Cai H, Zhao BC, Jiang HB, Lee ES. Comparison of Autogenous Tooth Materials and Other Bone Grafts. Tissue Eng Regen Med. 2021;18(3):327-341. doi: 10.1007/s13770-021-00333-4
- Muraev AA, Ivanov SY, Ivashkevich SG, Gorshenev VN, Teleshev AT, Kibardin AV, Kobets KK, Dubrovin VK. Organotypic bone grafts-a prospect for the development of modern osteoplastic materials. Dentistry. 2017;96(3):36-37. doi: 10.17116/stomat201796336-39. (In Russian).
- Chocholata P, Kulda V, Babuska V. Fabrication of Scaffolds for Bone-Tissue Regeneration. Materials (Basel). 2019;12(4):568. doi: 10.3390/ma12040568
- Battafarano G, Rossi M, De Martino V, Marampon F, Borro L, Secinaro A, Del Fattore A. Strategies for Bone Regeneration: From Graft to Tissue Engineering. Int J Mol Sci. 2021;22(3):1128. doi: 10.3390/ijms22031128
- Liang B, Liang JM, Ding JN, Xu J, Xu JG, Chai YM. Dimethyloxaloylglycine-stimulated human bone marrow mesenchymal stem cell-derived exosomes enhance bone regeneration through angiogenesis by targeting the AKT/mTOR pathway. Stem Cell Res Ther. 2019;10(1):335. doi: 10.1186/s13287-019-1410-y
- Naudot M, Garcia A, Jankovsky N, Barre A, Zabijak L, Azdad SZ, Collet L, Bedoui F, Hébraud A, Schlatter G, Devauchelle B, Marolleau JP, Legallais C, Le Ricousse S. The combination of a poly-caprolactone/nano-hydroxyapatite honeycomb scaffold and mesenchymal stem cells promotes bone regeneration in rat calvarial defects. J Tissue Eng Regen Med. 2020;14(11):1570-1580. doi: 10.1002/term.3114
- Wubneh A, Tsekoura EK, Ayranci C, Uludag H. Current state of fabrication technologies and materials for bone tissue engineering. Acta Biomater. 2018;80:1-30. doi: 10.1016/j.actbio.2018.09.031
- Iaquinta MR, Mazzoni E, Bononi I, Rotondo J, Mazziotta C, Montesi M, Sprio S, Tampieri A, Tognon, Martini F. Adult Stem Cells for Bone Regeneration and Repair. Frontiers in Cell and Developmental Biology. 2019;7:268. doi: 10.3389/fcell.2019.00268
- Huang X, Das R, Patel A, Nguyen TD. Physical Stimulations for Bone and Cartilage Regeneration. Regen Eng Transl Med. 2018;4(4):216-237. doi: 10.1007/s40883-018-0064-0
- Li S, Wei C, Lv Y. Preparation and Application of Magnetic Responsive Materials in Bone Tissue Engineering. Curr Stem Cell Res Ther. 2020;15(5):428-440. doi: 10.2174/1574888X15666200101122505
- Zhu F, Liu W, Li P, Zhao H, Deng X, Wang HL. Electric/Magnetic Intervention for Bone Regeneration: A Systematic Review and Network Meta-Analysis. Tissue Eng Part B Rev. 2023;29(3):217-231. doi: 10.1089/ten.TEB.2022.0127
- Bingi VN. Principles of electromagnetic biophysics. FIZMATLIT. 2011. 592 p. (In Russian).
- Miller MA, Suvorov EV. Lorenz force. Soviet Encyclopedia. 1988. 704 p. (In Russian).
- Bulygin VS. Lorentz Force. Great Russian Encyclopedia. 2004-2017. (In Russian).
- Ulashchik VS. Physiotherapy. The latest methods and technologies: Reference manual. Knizhny dom. 2013. 448 p. (In Russian).
- Maksimov AV, Shiman AG. Therapeutic application of magnetic fields. Textbook. 1991. 49 p. (In Russian).
- Binhi VN, Rubin AB. Theoretical Concepts in Magnetobiology after 40 Years of Research. Cells. 2022;11(2):274. doi: 10.3390/cells11020274
- Ning C, Zhou Z, Tan G, Zhu Y, Mao C. Electroactive polymers for tissue regeneration: Developments and perspectives. Prog. Polym. Sci. 2018;81:144-162. doi: 10.1016/j.progpolymsci.2018.01.001
- Ribeiro C, Sencadas V, Correia DM, Lanceros-Méndez S. Piezoelectric polymers as biomaterials for tissue engineering applications. Colloids and Surfaces B: Biointerfaces. 2015;136:46-55. doi: 10.1016/j.colsurfb.2015.08.043
- Halperin C, Mutchnik S, Agronin A, Molotskii M, Urenski P, Salai M, Rosenman G. Piezoelectric effect in human bones studied in nanometer scale. Nano Letters. 2004;4(7):1253-1256, doi: 10.1021/nl049453i
- Fukada E, Yasuda I. On the Piezoelectric Effect of Bone. J. Phys. Soc. Jpn. 1957;12:1158-1162. doi: 10.1143/JPSJ.12.1158
- Zhou T, Gao B, Fan Y, Liu Y, Feng S, Cong Q, Zhang X, Zhou Y, Yadav PS, Lin J, Wu N, Zhao L, Huang D, Zhou S, Su P, Yang Y. Piezo1/2 mediate mechanotransduction essential for bone formation through concerted activation of NFAT-YAP1-ß-catenin. Elife. 2020;9: e52779. doi: 10.7554/eLife.52779
- Wolfenson H, Yang B, Sheetz MP. Steps in Mechanotransduction Pathways that Control Cell Morphology. Annu Rev Physiol. 2019;81:585-605. doi: 10.1146/annurev-physiol-021317-121245
- Qin L, Liu W, Cao H, Xiao G. Molecular mechanosensors in osteocytes. Bone Res. 2020;8:23. doi: 10.1038/s41413-020-0099-y
- Xu X, Liu S, Liu H, Ru K, Jia Y, Wu Z, Liang S, Khan Z, Chen Z, Qian A, Hu L. Piezo Channels: Awesome Mechanosensitive Structures in Cellular Mechanotransduction and Their Role in Bone. Int J Mol Sci. 2021;22(12):6429. doi: 10.3390/ijms22126429
- Qi Y, Zhang S, Zhang M, Zhou Z, Zhang X, Li W, Cai H, Zhao BC, Lee ES, Jiang HB. Effects of Physical Stimulation in the Field of Oral Health. Scanning. 2021;2021:5517567. doi: 10.1155/2021/5517567
- Jing D, Zhai M, Tong S, Xu F, Cai J, Shen G, Wu Y, Li X, Xie K, Liu J, Xu Q, Luo E. Pulsed electromagnetic fields promote osteogenesis and osseointegration of porous titanium implants in bone defect repair through a Wnt/β-catenin signaling-associated mechanism. Sci Rep. 2016;6:32045. doi: 10.1038/srep32045
- Umiatin U, Hadisoebroto Dilogo I, Sari P, Kusuma Wijaya S. Histological Analysis of Bone Callus in Delayed Union Model Fracture Healing Stimulated with Pulsed Electromagnetic Fields (PEMF). Scientifica (Cairo). 2021;2021:4791172. doi: 10.1155/2021/4791172
- Yuan J, Xin F, Jiang W. Underlying Signaling Pathways and Therapeutic Applications of Pulsed Electromagnetic Fields in Bone Repair. Cell Physiol Biochem. 2018;46(4):1581-1594. doi: 10.1159/000489206
- Mansourian M, Shanei A. Evaluation of Pulsed Electromagnetic Field Effects: A Systematic Review and Meta-Analysis on Highlights of Two Decades of Research In Vitro Studies. Biomed Res Int. 2021;2021:6647497. doi: 10.1155/2021/6647497
- Zhai M, Jing D, Tong S, Wu Y, Wang P, Zeng Z, Shen G, Wang X, Xu Q, Luo E. Pulsed electromagnetic fields promote in vitro osteoblastogenesis through a Wnt/β-catenin signaling-associated mechanism. Bioelectromagnetics. 2016;37(3):152-162. doi: 10.1002/bem.21961
- Okada R, Yamato K, Kawakami M, Kodama J, Kushioka J, Tateiwa D, Ukon Y, Zeynep B, Ishimoto T, Nakano T, Yoshikawa H, Kaito T. Low magnetic field promotes recombinant human BMP-2-induced bone formation and influences orientation of trabeculae and bone marrow-derived stromal cells. Bone Rep. 2021;14:100757. doi: 10.1016/j.bonr.2021.100757
- Kamei N, Adachi N, Ochi M. Magnetic cell delivery for the regeneration of musculoskeletal and neural tissues. Regen Ther. 2018;9:116-119. doi: 10.1016/j.reth.2018.10.001
- Peng L, Fu C, Xiong F, Zhang Q, Liang Z, Chen L, He C, Wei Q. Effectiveness of Pulsed Electromagnetic Fields on Bone Healing: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Bioelectromagnetics. 2020;41(5):323-337. doi: 10.1002/bem.22271
- Zhao H, Liu C, Liu Y, Ding Q, Wang T, Li H, Wu H, Ma T. Harnessing electromagnetic fields to assist bone tissue engineering. Stem Cell Res Ther. 2023;14(1):7. doi: 10.1186/s13287-022-03217-z
- Di Bartolomeo M, Cavani F, Pellacani A, Grande A, Salvatori R, Chiarini L, Nocini R, Anesi A. Pulsed Electro-Magnetic Field (PEMF) Effect on Bone Healing in Animal Models: A Review of Its Efficacy Related to Different Type of Damage. Biology (Basel). 2022;11(3):402. doi: 10.3390/biology11030402
- Yang J, Zhou S, Lv H, Wei M, Fang Y, Shang P. Static magnetic field of 0.2-0.4 T promotes the recovery of hindlimb unloading-induced bone loss in mice. Int J Radiat Biol. 2021;97(5):746-754. doi: 10.1080/09553002.2021.1900944
- Naito Y, Yamada S, Jinno Y, Arai K, Galli S, Ichikawa T, Jimbo R. Bone-Forming Effect of a Static Magnetic Field in Rabbit Femurs. Int J Periodontics Restorative Dent. 2019;39(2):259-264. doi: 10.11607/prd.3220
- Zhang J, Ding C, Ren L, Zhou Y, Shang P. The effects of static magnetic fields on bone. Prog Biophys Mol Biol. 2014;114(3):146-52. doi: 10.1016/j.pbiomolbio.2014.02.001
- Zhang J, Meng X, Ding C, Shang P. Effects of static magnetic fields on bone microstructure and mechanical properties in mice. Electromagn Biol Med. 2018;37(2):76-83. doi: 10.1080/15368378.2018.1458626
- Zhang XY, Xue Y, Zhang Y. Effects of 0.4 T rotating magnetic field exposure on density, strength, calcium and metabolism of rat thigh bones. Bioelectromagnetics. 2006;27(1):1-9. doi: 10.1002/bem.20165
- Pan X, Xiao D, Zhang X, Huang Y, Lin B. Study of rotating permanent magnetic field to treat steroid-induced osteonecrosis of femoral head. Int Orthop. 2009;33(3):617-23. doi: 10.1007/s00264-007-0506-7
- Du L, Fan H, Miao H, Zhao G, Hou Y. Extremely low frequency magnetic fields inhibit adipogenesis of human mesenchymal stem cells. Bioelectromagnetics. 2014;35(7):519-30. doi: 10.1002/bem.21873
- Jing D, Cai J, Wu Y, Shen G, Zhai M, Tong S, Xu Q, Xie K, Wu X, Tang C, Xu X, Liu J, Guo W, Jiang M, Luo E. Moderate-intensity rotating magnetic fields do not affect bone quality and bone remodeling in hindlimb suspended rats. PLoS One. 2014;9(7): e102956. doi: 10.1371/journal.pone.0102956.
- Lee EJ, Jain M, Alimperti S. Bone Microvasculature: Stimulus for Tissue Function and Regeneration. Tissue Eng Part B Rev. 2021;27(4):313-329. doi: 10.1089/ten.TEB.2020.0154
- Lopes D, Martins-Cruz C, Oliveira MB, Mano JF. Bone physiology as inspiration for tissue regenerative therapies. Biomaterials. 2018;185:240-275. doi: 10.1016/j.biomaterials.2018.09.028
- Wiszniak S, Schwarz Q. Exploring the Intracrine Functions of VEGF-A. Biomolecules. 2021;11(1):128. doi: 10.3390/biom11010128
- Li Y, Baccouche B, Olayinka O, Serikbaeva A, Kazlauskas A. The Role of the Wnt Pathway in VEGF/Anti-VEGF-Dependent Control of the Endothelial Cell Barrier. Invest Ophthalmol Vis Sci. 2021;62(12):17. doi: 10.1167/iovs.62.12.17
- Caliogna L, Medetti M, Bina V, Brancato AM, Castelli A, Jannelli E, Ivone A, Gastaldi G, Annunziata S, Mosconi M, Pasta G. Pulsed Electromagnetic Fields in Bone Healing: Molecular Pathways and Clinical Applications. Int J Mol Sci. 2021;22(14):7403. doi: 10.3390/ijms22147403
- Hyldahl F, Hem-Jensen E, Rahbek UL, Tritsaris K, Dissing S. Pulsed electric fields stimulate microglial transmitter release of VEGF, IL-8 and GLP-1 and activate endothelial cells through paracrine signaling. Neurochem Int. 2023;163:105469. doi: 10.1016/j.neuint.2022.105469
- Peng L, Fu C, Liang Z, Zhang Q, Xiong F, Chen L, He C, Wei Q. Pulsed Electromagnetic Fields Increase Angiogenesis and Improve Cardiac Function After Myocardial Ischemia in Mice. Circ J. 2020;84(2):186-193. doi: 10.1253/circj.CJ-19-0758
- Cardoso VF, Francesko A, Ribeiro C, Bañobre-López M, Martins P, Lanceros-Mendez S. Advances in Magnetic Nanoparticles for Biomedical Applications. Adv Healthc Mater. 2018;7(5). doi: 10.1002/adhm.201700845
- Farzin A, Etesami SA, Quint J, Memic A, Tamayol A. Magnetic Nanoparticles in Cancer Therapy and Diagnosis. Adv Healthc Mater. 2020;9(9): e1901058. doi: 10.1002/adhm.201901058
- Shubayev VI, Pisanic TR, Jin S. Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev. 2009;61(6):467-467. doi: 10.1016/j.addr.2009.03.007
- Shustov MA, Shustova VA. Physiotherapy in dentistry and maxillofacial surgery. SpetsLit. 2019. 167 p. (In Russian).
- Bychkov AI. Electromagnetic stimulation of regeneration processes during dental implantation: dissertation for the degree of Doctor of Medical Sciences. M. 2005. 186 p. (In Russian).
- Dagaev ND. Properties of magnetic iron oxide nanoparticles and their applications. Science and education: topical issues of theory and practice: materials of the International scientific and methodological conference, Orenburg. 2021;223-225. (In Russian).
- Kuklina AS. Magnetite nanoparticles: preparation methods and properties (literature review). Modern science. 2019;6(2):8-12. (In Russian).
- Aghajanian AH, Bigham A, Sanati A, Kefayat A, Salamat MR, Sattary M, Rafienia M. A 3D macroporous and magnetic Mg2SiO4-CuFe2O4 scaffold for bone tissue regeneration: Surface modification, in vitro and in vivo studies. Biomater Adv. 2022;1(37):212809. doi: 10.1016/j.bioadv.2022.212809
- Wu D, Chang X, Tian J, Kang L, Wu Y, Liu J, Wu X, Huang Y, Gao B, Wang H, Qiu G, Wu Z. Bone mesenchymal stem cells stimulation by magnetic nanoparticles and a static magnetic field: release of exosomal miR-1260a improves osteogenesis and angiogenesis. J Nanobiotechnology. 2021;19(1):209. doi: 10.1186/s12951-021-00958-6
- Xia Y, Chen H, Zhao Y, Zhang F, Li X, Wang L, Weir MD, Ma J, Reynolds MA, Gu N, Xu HHK. Novel magnetic calcium phosphate-stem cell construct with magnetic field enhances osteogenic differentiation and bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2019;98:30-41. doi: 10.1016/j.msec.2018.12.120
- Zamai TN, Tolmacheva TV. New strategies for bone tissue regeneration using magnetomechanical transduction. Siberian Medical Review. 2021;6:5-11 (In Russian).
- Lu JW, Yang F, Ke QF, Xie XT, Guo YP. Magnetic nanoparticles modified-porous scaffolds for bone regeneration and photothermal therapy against tumors. Nanomedicine. 2018;14(3):811-822. doi: 10.1016/j.nano.2017.12.025
- Qing L, Gang Z, Tong W, Yongzhao H, Xuliang D, Yan Wei. Investigations into the Biocompatibility of Nano-hydroxyapatite Coated Magnetic Nanoparticles under Magnetic Situation. Journal of Nanomaterials. 2015;10. http://dx.doi.org/10.1155/2015/835604
- Galli C, Pedrazzi G, Mattioli-Belmonte M, Guizzardi S. The Use of Pulsed Electromagnetic Fields to Promote Bone Responses to Biomaterials In Vitro and In Vivo. Int J Biomater. 2018;2018:8935750. doi: 10.1155/2018/8935750
Supplementary files
