The role of type 2 inflammation in the pathogenesis of atopic dermatitis

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

Relevance. Atopic dermatitis (AD) is classified as a chronic immune-­mediated disease, with its pathogenesis rooted in genetic predisposition and immune response dysregulation, predominantly driven by T2‑inflammatory reactions. This review highlights key aspects of the immunopathogenesis of AD, emphasizing its systemic inflammatory nature linked to T2‑immune dysregulation. This leads to the activation of cytokines such as IL‑4, IL‑5, IL‑13, and IL‑31. The article analyzes modern treatment approaches, including targeted therapy aimed at blocking T2 cytokines, stressing the importance of early intervention to prevent complications and the development of the atopic march. Understanding T2‑inflammation mechanisms opens new opportunities for developing effective personalized therapies for AD. Conclusion. Type 2 inflammation plays a pivotal role in the pathogenesis of AD, driving chronic inflammation, skin barrier dysfunction, and the clinical manifestations of the disease. Key mediators of T2 inflammation-­including IL‑4, IL‑5, IL‑13, and IL‑31‑regulate the activation of various immune-­competent cells, not only amplifying inflammation but also contributing to the development of pruritus. This, in turn, establishes the self-perpetuating “itch-scratch” cycle, which exacerbates skin damage and further stimulates inflammatory processes. Impaired skin barrier function also facilitates the penetration of allergens and microbial agents, further activating the immune response and worsening disease severity. Studying type 2 inflammation as a central mechanism in AD pathogenesis not only advances our understanding of the disease but also facilitates the development of new therapeutic strategies to control AD and improve patients’ quality of life, which remains a priority in contemporary immunology, allergology, and dermatology.

Авторлар туралы

Olga Elisyutina

National Research Center - Institute of Immunology FMBA of Russia; RUDN University

Хат алмасуға жауапты Автор.
Email: el-olga@yandex.ru
ORCID iD: 0000-0002-4609-2591
SPIN-код: 9567-1894
Moscow, Russian Federation

Evgenii Smolnikov

National Research Center - Institute of Immunology FMBA of Russia; RUDN University

Email: el-olga@yandex.ru
ORCID iD: 0000-0003-1302-4178
SPIN-код: 4874-8100
Moscow, Russian Federation

Daria Chernushevich

National Research Center - Institute of Immunology FMBA of Russia; RUDN University

Email: el-olga@yandex.ru
ORCID iD: 0000-0003-0006-2773
SPIN-код: 2497-5608
Moscow, Russian Federation

Alla Litovkina

National Research Center - Institute of Immunology FMBA of Russia; RUDN University

Email: el-olga@yandex.ru
ORCID iD: 0000-0002-5021-9276
SPIN-код: 2337-7930
Moscow, Russian Federation

Maria Byazrova

National Research Center - Institute of Immunology FMBA of Russia; RUDN University

Email: el-olga@yandex.ru
ORCID iD: 0000-0002-9858-7596
SPIN-код: 4317-9042
Moscow, Russian Federation

Elena Levkova

RUDN University

Email: el-olga@yandex.ru
SPIN-код: 6407-9880
Moscow, Russian Federation

Elena Fedenko

National Research Center - Institute of Immunology FMBA of Russia

Email: el-olga@yandex.ru
ORCID iD: 0000-0003-3358-5087
SPIN-код: 5012-7242
Moscow, Russian Federation

Әдебиет тізімі

  1. Weidinger S, Novak N. Atopic dermatitis. The Lancet. 2016;387(10023):1109–1122. doi: 10.1016/S0140-6736(15)00149-X
  2. Kubanov AA, Namazova-­Baranova LS, Khaitov RM, Ilyina NI, Alekseeva AA, Ambarchian ET, Artemyeva S, Arshinskiy MI, Astafyeva NG, Vishneva EA, Volnukhin VA, Danilycheva IV, Elisyutina OG, Epishev RV, Zhestkov AV, Zhilova MB, Zhukova OV, Zaslavsky DV, Znamenskaya LF, Karamova AE, Korotky NG, Kokhan MM, Kruglova LS, Kungurov NV, Levina JG, Lvov AN, Materikin AI, Mishina OS, Monakhov KN, Murashkin NN, Nenasheva NM, Pampura AN, Plakhova XI, Potekaev NN, Prytulо OA, Raznatovskiy KI, Sapuntsova SG, Selimzianova LR, Skorokhodkina OV, Fedenko ES, Fomina DS, Frigo NV, Frolova ZV, Khaitov MR, Chikin VV. Atopic dermatitis. Russian Journal of Allergy. 2021;18(3):44–92. (In Russian). doi: 10.36691/RJA1474
  3. Haddad EB, Cyr SL, Arima K, McDonald RA, Levit NA, Nestle FO. Current and Emerging Strategies to Inhibit Type 2 Inflammation in Atopic Dermatitis. Dermatology and Therapy. 2022;12(7): 1501–1533. doi: 10.1007/s13555–022–00737–7
  4. Beck LA, Cork MJ, Amagai M, De Benedetto A, Kabashima K, Hamilton JD. Type 2 Inflammation Contributes to Skin Barrier Dysfunction in Atopic Dermatitis. JID Innovations. 2022;2(5):100131. doi: 10.1016/j.xjidi.2022.100131
  5. Laughter MR, Maymone MBC, Mashayekhi S, Arents BWM, Karimkhani C, Langan SM, Dellavalle RP, Flohr C. The global burden of atopic dermatitis: lessons from the Global Burden of Disease Study 1990–2017. The British Journal of Dermatology. 2021;184(2):304–309. doi: 10.1111/bjd.19580
  6. Nemer AA, Zhukova OV, Tereshchenko GP. Clinical features and risk factors of IgE-independent atopic dermatitis in children. RUDN Journal of Medicine. 2023;27(1):90–100. (In Russian). doi: 10.22363/2313-0245-2023-27-1-90-100
  7. Barbarot S, Auziere S, Gadkari A, Girolomoni G, Puig L, Simpson EL. Epidemiology of atopic dermatitis in adults: Results from an international survey. Allergy. 2018;73(6):1284–1293. doi: 10.1111/all.13401
  8. Italian Adult Atopic Dermatitis Study Group, Megna M, Patruno C, Balato A, Rongioletti F, Stingeni L. An Italian multicentre study on adult atopic dermatitis: persistent versus adult-­onset disease. Archives of Dermatological Research. 2017;309(6):443–452. doi: 10.1007/s00403-017-1739‑y
  9. Oliveira C, Torres T. More than skin deep: the systemic nature of atopic dermatitis. European Journal of Dermatology. 2019;29(3):250–258. doi: 10.1684/ejd.2019.3557
  10. Schuler CF, Billi AC, Maverakis E, Tsoi LC, Gudjonsson JE. Novel insights into atopic dermatitis. Journal of Allergy and Clinical Immunology. 2023;151(5):1145–1154. doi: 10.1016/j.jaci.2022.10.023
  11. Gandhi NA, Bennett BL, Graham NMH, Pirozzi G, Stahl N, Yancopoulos GD. Targeting key proximal drivers of type 2 inflammation in disease. Nature Reviews. Drug Discovery. 2016;15(1):35–50. doi: 10.1038/nrd4624
  12. Junttila IS, Mizukami K, Dickensheets H, Meier-­Schellersheim M, Yamane H, Donnelly RP. Tuning sensitivity to IL‑4 and IL‑13: differential expression of IL‑4Rα, IL‑13Rα1, and γc regulates relative cytokine sensitivity. The Journal of Experimental Medicine. 2008;205(11):2595–2608. doi: 10.1084/jem.20080452
  13. Licona-­Limón P, Kim LK, Palm NW, Flavell RA. TH2, allergy and group 2 innate lymphoid cells. Nature. Immunology. 2013;14(6):536–542. doi: 10.1038/ni.2617
  14. Roufosse F. Targeting the Interleukin‑5 Pathway for Treatment of Eosinophilic Conditions Other than Asthma. Frontiers in Medicine. 2018;5:49. doi: 10.3389/fmed.2018.00049
  15. Bağci IS, Ruzicka T. IL‑31: A new key player in dermatology and beyond. The Journal of Allergy and Clinical Immunology. 2018;141(3):858–866. doi: 10.1016/j.jaci.2017.10.045
  16. Murdaca G, Greco M, Tonacci A, Negrini S, Borro M, Puppo F, Gangemi S. IL‑33/IL‑31 Axis in Immune-­Mediated and Allergic Diseases. Int J Mol Sci. 2019;20(23):5856. doi: 10.3390/ijms20235856
  17. Chakraborty S, Kubatzky KF, Mitra DK. An Update on Interleukin‑9: From Its Cellular Source and Signal Transduction to Its Role in Immunopathogenesis. International Journal of Molecular Sciences. 2019;20(9):2113. doi: 10.3390/ijms20092113
  18. Chung F. Anti-inflammatory cytokines in asthma and allergy: interleukin‑10, interleukin‑12, interferon-­gamma. Mediators of Inflammation. 2001;10(2):51–59. doi: 10.1080/09629350120054518
  19. Kuang PP, Liu XQ, Li CG, He BX, Xie YC, Wu ZC. Mesenchymal stem cells overexpressing interleukin‑10 prevent allergic airway inflammation. Stem Cell Research & Therapy. 2023;14(1):369. doi: 10.1186/s13287-023-03602-2
  20. Hawrylowicz CM, O’Garra A. Potential role of interleukin‑10‑secreting regulatory T cells in allergy and asthma. Nature Reviews. Immunology. 2005;5(4):271–283. doi: 10.1038/nri1589
  21. Salter BM, Oliveria JP, Nusca G, Smith SG, Tworek D, Mitchell PD. IL‑25 and IL‑33 induce Type 2 inflammation in basophils from subjects with allergic asthma. Respiratory Research. 2016;17:5. doi: 10.1186/s12931-016-0321‑z
  22. Saenz SA, Siracusa MC, Perrigoue JG, Spencer SP, Urban JF Jr, Tocker JE, Budelsky AL, Kleinschek MA, Kastelein RA, Kambayashi T, Bhandoola A, Artis D. IL25 elicits a multipotent progenitor cell population that promotes T(H)2 cytokine responses. Nature. 2010;464(7293):1362–6. doi: 10.1038/nature08901
  23. Noda S, Krueger JG, Guttman-­Yassky E. The translational revolution and use of biologics in patients with inflammatory skin diseases. Journal of Allergy and Clinical Immunology. 2015;135(2):324–336. doi: 10.1016/j.jaci.2014.11.015
  24. Luo J, Zhu Z, Zhai Y, Zeng J, Li L, Wang D. The Role of TSLP in Atopic Dermatitis: From Pathogenetic Molecule to Therapeutical Target. Mediators of Inflammation. 2023;2023:1–8. doi: 10.1155/2023/7697699.
  25. Gordon S, Martinez FO. Alternative Activation of Macrophages: Mechanism and Functions. Immunity. 2010;32(5):593–604. doi: 10.1016/j.immuni.2010.05.007
  26. Munder M, Eichmann K, Modolell M. Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: competitive regulation by CD4+ T cells correlates with Th1/Th2 phenotype. Journal of Immunology. Baltimore. 1998;160(11):5347–5354.
  27. Zhu X, Pribis JP, Rodriguez PC, Morris SM, Vodovotz Y, Billiar TR. The Central Role of Arginine Catabolism in T-Cell Dysfunction and Increased Susceptibility to Infection After Physical Injury. Annals of Surgery. 2014;259(1):171–178. doi: 10.1097/SLA.0b013e31828611f8
  28. Maarsingh H, Zaagsma J, Meurs H. Arginase: a key enzyme in the pathophysiology of allergic asthma opening novel therapeutic perspectives. British Journal of Pharmacology. 2009;158(3):652–664. doi: 10.1111/j.1476-5381.2009.00374.x
  29. Esser-von Bieren J, Mosconi I, Guiet R, Piersgilli A, Volpe B, Chen F. Antibodies Trap Tissue Migrating Helminth Larvae and Prevent Tissue Damage by Driving IL‑4Rα-­Independent Alternative Differentiation of Macrophages. Wynn TA (ed.) PLoS Pathogens. 2013;9(11): e1003771. doi: 10.1371/journal.ppat.1003771.
  30. Nair MG, Du Y, Perrigoue JG, Zaph C, Taylor JJ, Goldschmidt M. Alternatively activated macrophage-­derived RELM-α is a negative regulator of type 2 inflammation in the lung. Journal of Experimental Medicine. 2009;206(4):937–952. doi: 10.1084/jem.20082048.
  31. Granato A, Hayashi EA, Baptista BJA, Bellio M, Nobrega A. IL‑4 regulates Bim expression and promotes B cell maturation in synergy with BAFF conferring resistance to cell death at negative selection checkpoints. Journal of Immunology. Baltimore. 2014;192(12):5761–5775. doi: 10.4049/jimmunol.1300749
  32. Garcovich S, Maurelli M, Gisondi P, Peris K, Yosipovitch G, Girolomoni G. Pruritus as a Distinctive Feature of Type 2 Inflammation. Vaccines. 2021;9(3):303. doi: 10.3390/vaccines9030303
  33. Murashkin NN, Opryatin LA, Epishev RV, Materikin AI, Ambarchian ET, Ivanov RA, et al. Pruritus and Atopic Dermatitis: from Etiological Features to Management. Current Pediatrics. 2020;19(6):468–476. doi: 10.15690/vsp.v19i6.2151
  34. Yuan Q, Campanella GS, Colvin RA, Hamilos DL, Jones KJ, Mathew A. Membrane-­bound eotaxin‑3 mediates eosinophil transepithelial migration in IL‑4‑stimulated epithelial cells. European Journal of Immunology. 2006;36(10):2700–2714. doi: 10.1002/eji.200636112
  35. Nagase H, Ueki S, Fujieda S. The roles of IL‑5 and anti-­IL‑5 treatment in eosinophilic diseases: Asthma, eosinophilic granulomatosis with polyangiitis, and eosinophilic chronic rhinosinusitis. Allergology International: Official Journal of the Japanese Society of Allergology. 2020;69(2):178–186. doi: 10.1016/j.alit.2020.02.002
  36. Licona-­Limón P, Henao-­Mejia J, Temann AU, Gagliani N, Licona-­Limón I, Ishigame H. Th9 Cells Drive Host Immunity against Gastrointestinal Worm Infection. Immunity. 2013;39(4):744–757. doi: 10.1016/j.immuni.2013.07.020
  37. Goswami R, Kaplan MH. A brief history of IL‑9. Journal of Immunology. Baltimore. 2011;186(6):3283–3288. doi: 10.4049/jimmunol.1003049
  38. Bazzoni F, Tamassia N, Rossato M, Cassatella MA. Understanding the molecular mechanisms of the multifaceted IL‑10‑mediated anti-inflammatory response: lessons from neutrophils. European Journal of Immunology. 2010;40(9):2360–2368. doi: 10.1002/eji.200940294
  39. Fang D, Zhu J. Molecular switches for regulating the differentiation of inflammatory and IL‑10‑producing anti-inflammatory T-helper cells. Cellular and molecular life sciences: CMLS. 2020;77(2):289–303. doi: 10.1007/s00018-019-03277-0
  40. Haben I, Hartmann W, Specht S, Hoerauf A, Roers A, Müller W, Breloer M. T-cell-derived, but not B-cell-derived, IL‑10 suppresses antigen-­specific T-cell responses in Litomosoides sigmodontis-­infected mice. Eur J Immunol. 2013;43(7):1799–805. doi: 10.1002/eji.201242929
  41. Matsuoka T, Shamji MH, Durham SR. Allergen immunotherapy and tolerance. Allergology International: Official Journal of the Japanese Society of Allergology. 2013;62(4):403–413. doi: 10.2332/allergolint.13-RAI‑0650
  42. Rojas OL, Pröbstel AK, Porfilio EA, Wang AA, Charabati M, Sun T. Recirculating Intestinal IgA-Producing Cells Regulate Neuroinflammation via IL‑10. Cell. 2019;176(3):610–624.e18. doi: 10.1016/j.cell.2018.11.035
  43. Sun H, Chen N, Yang X, Xia Y, Wu D. Effects induced by polyethylene microplastics oral exposure on colon mucin release, inflammation, gut microflora composition and metabolism in mice. Ecotoxicology and Environmental Safety. 2021;220:112340. doi: 10.1016/j.ecoenv.2021.112340
  44. Furue M, Yamamura K, Kido-­Nakahara M, Nakahara T, Fukui Y. Emerging role of interleukin‑31 and interleukin‑31 receptor in pruritus in atopic dermatitis. Allergy. 2018;73(1):29–36. doi: 10.1111/all.13239
  45. Cornelissen C, Marquardt Y, Czaja K, Wenzel J, Frank J, Lüscher-­Firzlaff J. IL‑31 regulates differentiation and filaggrin expression in human organotypic skin models. The Journal of Allergy and Clinical Immunology. 2012;129(2):426–433. doi: 10.1016/j.jaci.2011.10.042
  46. Valizadeh A, Khosravi A, Zadeh LJ, Parizad EG. Role of IL‑25 in Immunity. Journal of clinical and diagnostic research: JCDR. 2015;9(4): OE01–04. doi: 10.7860/JCDR/2015/12235.5814
  47. Wang YH, Angkasekwinai P, Lu N, Voo KS, Arima K, Hanabuchi S. IL‑25 augments type 2 immune responses by enhancing the expansion and functions of TSLP-DC-activated Th2 memory cells. The Journal of Experimental Medicine. 2007;204(8):1837–1847. doi: 10.1084/jem.20070406
  48. Fallon PG, Ballantyne SJ, Mangan NE, Barlow JL, Dasvarma A, Hewett DR, McIlgorm A, Jolin HE, McKenzie AN. Identification of an interleukin (IL)-25‑dependent cell population that provides IL‑4, IL‑5, and IL‑13 at the onset of helminth expulsion. J Exp Med. 2006;203(4):1105–16. doi: 10.1084/jem.20051615
  49. Drake LY, Kita H. IL‑33: biological properties, functions, and roles in airway disease. Immunological Reviews. 2017;278(1):173–184. doi: 10.1111/imr.12552
  50. Endo Y, Hirahara K, Iinuma T, Shinoda K, Tumes DJ, Asou HK. The interleukin‑33‑p38 kinase axis confers memory T helper 2 cell pathogenicity in the airway. Immunity. 2015;42(2):294–308. doi: 10.1016/j.immuni.2015.01.016
  51. Shikotra A, Choy DF, Ohri CM, Doran E, Butler C, Hargadon B. Increased expression of immunoreactive thymic stromal lymphopoietin in patients with severe asthma. The Journal of Allergy and Clinical Immunology. 2012;129(1):104–111.e1–9. doi: 10.1016/j.jaci.2011.08.031
  52. Tatsuno K, Fujiyama T, Yamaguchi H, Waki M, Tokura Y. TSLP Directly Interacts with Skin-­Homing Th2 Cells Highly Expressing its Receptor to Enhance IL‑4 Production in Atopic Dermatitis. J Invest Dermatol. 2015;135(12):3017–3024. doi: 10.1038/jid.2015.318
  53. Ito T, Wang YH, Duramad O, Hori T, Delespesse GJ, Watanabe N. TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. The Journal of Experimental Medicine. 2005;202(9):1213–1223. doi: 10.1084/jem.20051135
  54. Sano Y, Masuda K, Tamagawa-­Mineoka R, Matsunaka H, Murakami Y, Yamashita R, Morita E, Katoh N. Thymic stromal lymphopoietin expression is increased in the horny layer of patients with atopic dermatitis. Clin Exp Immunol. 2013;171(3):330–7. doi: 10.1111/cei.12021
  55. Carr S, Watson W. Eosinophilic esophagitis. Allergy, Asthma, and Clinical Immunology: Official Journal of the Canadian Society of Allergy and Clinical Immunology. 2011;7(Suppl 1): S8. doi: 10.1186/1710-1492-7-S1-S8
  56. Garudadri S, Woodruff PG. Targeting Chronic Obstructive Pulmonary Disease Phenotypes, Endotypes, and Biomarkers. Annals of the American Thoracic Society. 2018;15(Suppl 4): S234–S238. doi: 10.1513/AnnalsATS.201808-533MG
  57. Kulthanan K, Tuchinda P, Nitiyarom R, Chunharas A, Chantaphakul H, Aunhachoke K, Chularojanamontri L, Rajatanavin N, Jirapongsananuruk O, Vichyanond P, Chatchatee P, Sangsupawanich P, Wananukul S, Singalavanija S, Trakanwittayarak S, Rerkpattanapipat T, Thongngarm T, Wisuthsarewong W, Limpongsanurak W, Kamchaisatian W, Noppakun N. Clinical practice guidelines for the diagnosis and management of atopic dermatitis. Asian Pac J Allergy Immunol. 2021;39(3):145–155. doi: 10.12932/AP‑010221–1050
  58. Torres T, Ferreira EO, Gonçalo M, Mendes-­Bastos P, Selores M, Filipe P. Update on Atopic Dermatitis. Acta Médica Portuguesa. 2019;32(9):606–613. doi: 10.20344/amp.11963
  59. Moosbrugger-­Martinz V, Leprince C, Méchin MC, Simon M, Blunder S, Gruber R. Revisiting the Roles of Filaggrin in Atopic Dermatitis. International Journal of Molecular Sciences. 2022;23(10): 5318. doi: 10.3390/ijms23105318
  60. Furue M. Regulation of Filaggrin, Loricrin, and Involucrin by IL‑4, IL‑13, IL‑17A, IL‑22, AHR, and NRF2: Pathogenic Implications in Atopic Dermatitis. International Journal of Molecular Sciences. 2020;21(15):5382. doi: 10.3390/ijms21155382
  61. van Smeden J, Bouwstra JA. Stratum Corneum Lipids: Their Role for the Skin Barrier Function in Healthy Subjects and Atopic Dermatitis Patients. Current Problems in Dermatology. 2016;49:8–26. doi: 10.1159/000441540
  62. Suwanchote S, Waitayangkoon P, Chancheewa B, Inthanachai T, Niwetbowornchai N, Edwards SW, Virakul S, Thammahong A, Kiatsurayanon C, Rerknimitr P, Chiewchengchol D. Role of antimicrobial peptides in atopic dermatitis. Int J Dermatol. 2022;61(5):532–540. doi: 10.1111/ijd.15814
  63. Yang G, Seok JK, Kang HC, Cho YY, Lee HS, Lee JY. Skin Barrier Abnormalities and Immune Dysfunction in Atopic Dermatitis. International Journal of Molecular Sciences. 2020;21(8): 2867. doi: 10.3390/ijms21082867.
  64. Palmer CNA, Irvine AD, Terron-­Kwiatkowski A, Zhao Y, Liao H, Lee SP. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nature Genetics. 2006;38(4):441–446. doi: 10.1038/ng1767
  65. Szegedi A. Filaggrin mutations in early- and late-onset atopic dermatitis. Br J Dermatol. 2015;172(2):320–1. doi: 10.1111/bjd.13534
  66. Sahlén P, Spalinskas R, Asad S, Mahapatra KD, Höjer P, Anil A. Chromatin interactions in differentiating keratinocytes reveal novel atopic dermatitis- and psoriasis-­associated genes. The Journal of Allergy and Clinical Immunology. 2021;147(5):1742–1752. doi: 10.1016/j.jaci.2020.09.035
  67. DeVore SB, Stevens ML, He H, Biagini JM, Kroner JW, Martin LJ. Novel role for caspase recruitment domain family member 14 and its genetic variant rs11652075 in skin filaggrin homeostasis. The Journal of Allergy and Clinical Immunology. 2022;149(2):708–717. doi: 10.1016/j.jaci.2021.07.003
  68. Thyssen JP, Kezic S. Causes of epidermal filaggrin reduction and their role in the pathogenesis of atopic dermatitis. J Allergy Clin Immunol. 2014;134(4):792–9. doi: 10.1016/j.jaci.2014.06.014
  69. Suárez-­Fariñas M, Tintle SJ, Shemer A, Chiricozzi A, Nograles K, Cardinale I, Duan S, Bowcock AM, Krueger JG, Guttman-­Yassky E. Non-lesional atopic dermatitis (AD) skin is characterized by broad terminal differentiation defects and variable immune abnormalities. The Journal of allergy and clinical immunology. 2011;127(4):954–64.e1–4. doi: 10.1016/j.jaci.2010.12.1124
  70. De Benedetto A, Rafaels NM, McGirt LY, Ivanov AI, Georas SN, Cheadle C. Tight Junction Defects in Atopic Dermatitis. The Journal of allergy and clinical immunology. 2011;127(3):773–786.e7. doi: 10.1016/j.jaci.2010.10.018
  71. Elias PM, Wakefield J. Mechanisms of abnormal lamellar body secretion and the dysfunctional skin barrier in atopic dermatitis. The Journal of allergy and clinical immunology. 2014;134(4):781–791.e1. doi: 10.1016/j.jaci.2014.05.048
  72. Leung DY, Guttman-­Yassky E. Deciphering the complexities of atopic dermatitis: shifting paradigms in treatment approaches. The Journal of allergy and clinical immunology. 2014;134(4):769–79. doi: 10.1016/j.jaci.2014.08.008
  73. Langan SM, Irvine AD, Weidinger S. Atopic dermatitis. Lancet. 2020;396(10247):345–360. doi: 10.1016/S0140-6736 (20) 31286-1
  74. Elhaji Y, Sasseville D, Pratt M, Asai Y, Matheson K, McLean WHI. Filaggrin gene loss-of-function mutations constitute a factor in patients with multiple contact allergies. Contact Dermatitis. 2019;80(6):354–358. doi: 10.1111/cod.13268
  75. Campana R, Dzoro S, Mittermann I, Fedenko E, Elisyutina O, Khaitov M. Molecular aspects of allergens in atopic dermatitis. Current Opinion in Allergy & Clinical Immunology. 2017;17(4):269–277. doi: 10.1097/ACI.0000000000000378
  76. Silverberg JI, Hanifin J, Simpson EL. Climatic factors are associated with childhood eczema prevalence in US. The Journal of investigative dermatology. 2013;133(7):1752–1759. doi: 10.1038/jid.2013.19.
  77. Sargen MR, Hoffstad O, Margolis DJ. Warm, humid, and high sun exposure climates are associated with poorly controlled eczema: PEER (Pediatric Eczema Elective Registry) cohort, 2004–2012. J Invest Dermatol. 2014;134(1):51–57. doi: 10.1038/jid.2013.274
  78. Towell AM, Feuillie C, Vitry P, Da Costa TM, Mathelié-­Guinlet M, Kezic S. Staphylococcus aureus binds to the N-terminal region of corneodesmosin to adhere to the stratum corneum in atopic dermatitis. Proceedings of the National Academy of Sciences of the United States of America. 2021;118(1): e2014444118. doi: 10.1073/pnas.2014444118
  79. Gonzalez T, Stevens ML, Baatyrbek Kyzy A, Alarcon R, He H, Kroner JW. Biofilm propensity of Staphylococcus aureus skin isolates is associated with increased atopic dermatitis severity and barrier dysfunction in the MPAACH pediatric cohort. Allergy. 2021;76(1):302–313. doi: 10.1111/all.14489
  80. Reginald K, Westritschnig K, Werfel T, Heratizadeh A, Novak N, Focke-­Tejkl M. IgE antibody reactivity to bacterial antigens in atopic dermatitis patients. Clinical and experimental allergy: journal of the British Society for Allergy and Clinical Immunology. 2010;41(3):357. doi: 10.1111/j.1365–2222.2010.03655.x
  81. Tomczak H, Wróbel J, Jenerowicz D, Sadowska-­Przytocka A, Wachal M, Adamski Z. The role of Staphylococcus aureus in atopic dermatitis: microbiological and immunological implications. Advances in Dermatology and Allergology/Postȩpy Dermatologii i Alergologii. 2019;36(4):485–491. doi: 10.5114/ada.2018.77056
  82. Nakamura Y, Oscherwitz J, Cease KB, Chan SM, Muñoz-­Planillo R, Hasegawa M, Villaruz AE, Cheung GY, McGavin MJ, Travers JB, Otto M, Inohara N, Núñez G. Staphylococcus δ-toxin induces allergic skin disease by activating mast cells. Nature. 2013;503(7476):397–401. doi: 10.1038/nature12655
  83. Nakatsuji T, Chen TH, Two AM, Chun KA, Narala S, Geha RS. Staphylococcus aureus exploits epidermal barrier defects in atopic dermatitis to trigger cytokine expression. The Journal of investigative dermatology. 2016;136(11):2192–2200. doi: 10.1016/j.jid.2016.05.127
  84. Miajlovic H, Fallon PG, Irvine AD, Foster TJ. Effect of filaggrin breakdown products on growth of and protein expression by Staphylococcus aureus. The Journal of Allergy and Clinical Immunology. 2010;126(6):1184–1190.e3. doi: 10.1016/j.jaci.2010.09.015
  85. Totté JEE, van der Feltz WT, Hennekam M, van Belkum A, van Zuuren EJ, Pasmans SGMA. Prevalence and odds of Staphylococcus aureus carriage in atopic dermatitis: a systematic review and meta-analysis. The British Journal of Dermatology. 2016;175(4):687–695. doi: 10.1111/bjd.14566
  86. Kong HH, Oh J, Deming C, Conlan S, Grice EA, Beatson MA. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Research. 2012;22(5):850–859. doi: 10.1101/gr.131029.111
  87. Lehtimäki J, Thorsen J, Rasmussen MA, Hjelmsø M, Shah S, Mortensen MS. Urbanized microbiota in infants, immune constitution, and later risk of atopic diseases. The Journal of Allergy and Clinical Immunology. 2021;148(1):234–243. doi: 10.1016/j.jaci.2020.12.621
  88. Glatz M, Bosshard PP, Hoetzenecker W, Schmid-­Grendelmeier P. The Role of Malassezia spp. in Atopic Dermatitis. Journal of Clinical Medicine. 2015;4(6):1217–1228. doi: 10.3390/jcm4061217
  89. Bieber T. Disease modification in inflammatory skin disorders: opportunities and challenges. Nature Reviews. Drug Discovery. 2023;22(8):662–680. doi: 10.1038/s41573-023-00735-0
  90. Blauvelt A, Bruin-­Weller M de, Gooderham M, Cather JC, Weisman J, Pariser D. Long-term management of moderate-to-severe atopic dermatitis with dupilumab and concomitant topical corticosteroids (LIBERTY AD CHRONOS): a 1‑year, randomised, double-­blinded, placebo-­controlled, phase 3 trial. The Lancet. 2017;389(10086):2287–2303. doi: 10.1016/S0140-6736 (17) 31191-1
  91. Simpson EL, Bieber T, Guttman-­Yassky E, Beck LA, Blauvelt A, Cork MJ, Silverberg JI, Deleuran M, Kataoka Y, Lacour JP, Kingo K, Worm M, Poulin Y, Wollenberg A, Soo Y, Graham NM, Pirozzi G, Akinlade B, Staudinger H, Mastey V, Eckert L, Gadkari A, Stahl N, Yancopoulos GD, Ardeleanu M; SOLO 1 and SOLO 2 Investigators. Two Phase 3 Trials of Dupilumab versus Placebo in Atopic Dermatitis. N Engl J Med. 2016;375(24):2335–2348. doi: 10.1056/NEJMoa1610020
  92. Bruin-­Weller M de, Thaçi D, Smith CH, Reich K, Cork MJ, Radin A. Dupilumab with concomitant topical corticosteroid treatment in adults with atopic dermatitis with an inadequate response or intolerance to ciclosporin A or when this treatment is medically inadvisable: a placebo-­controlled, randomized phase III clinical t. British Journal of Dermatology. 2018;178(5):1083–1101. doi: 10.1111/bjd.16156
  93. Thaçi D, Simpson EL, Deleuran M, Kataoka Y, Chen Z, Gadkari A. Efficacy and safety of dupilumab monotherapy in adults with moderate-to-severe atopic dermatitis: a pooled analysis of two phase 3 randomized trials (LIBERTY AD SOLO 1 and LIBERTY AD SOLO 2). Journal of Dermatological Science. 2019;94(2):266–275. doi: 10.1016/j.jdermsci.2019.02.002
  94. Wang FP, Tang XJ, Wei CQ, Xu LR, Mao H, Luo FM. Dupilumab treatment in moderate-to-severe atopic dermatitis: A systematic review and meta-analysis. Journal of Dermatological Science. 2018;90(2):190–198. doi: 10.1016/j.jdermsci.2018.01.016
  95. Busse WW, Maspero JF, Rabe KF, Papi A, Wenzel SE, Ford LB. Liberty Asthma QUEST: Phase 3 Randomized, Double-­Blind, Placebo-­Controlled, Parallel-­Group Study to Evaluate Dupilumab Efficacy/Safety in Patients with Uncontrolled, Moderate-to-­Severe Asthma. Advances in Therapy. 2018;35(5):737–748. doi: 10.1007/s12325-018-0702-4
  96. Rial MJ, Barroso B, Sastre J. Dupilumab for treatment of food allergy. The Journal of Allergy and Clinical Immunology. In Practice. 2019;7(2):673–674. doi: 10.1016/j.jaip.2018.07.027
  97. Panettieri RA, Sjöbring U, Péterffy A, Wessman P, Bowen K, Piper E. Tralokinumab for severe, uncontrolled asthma (STRATOS 1 and STRATOS 2): two randomised, double-­blind, placebo-­controlled, phase 3 clinical trials. The Lancet. Respiratory Medicine. 2018;6(7):511–525. doi: 10.1016/S2213-2600(18)30184-X
  98. Wollenberg A, Howell MD, Guttman-­Yassky E, Silverberg JI, Kell C, Ranade K. Treatment of atopic dermatitis with tralokinumab, an anti-­IL‑13 mAb. The Journal of Allergy and Clinical Immunology. 2019;143(1):135–141. doi: 10.1016/j.jaci.2018.05.029
  99. Blauvelt A, Guttman-­Yassky E, Lynde C, Khattri S, Schlessinger J, Imafuku S. Cendakimab in Patients With Moderate to Severe Atopic Dermatitis: A Randomized Clinical Trial. JAMA dermatology. 2024;160(8):856–864. doi: 10.1001/jamadermatol.2024.2131.
  100. Hirano I, Collins MH, Assouline-­Dayan Y, Evans L, Gupta S, Schoepfer AM. RPC4046, a Monoclonal Antibody Against IL13, Reduces Histologic and Endoscopic Activity in Patients With Eosinophilic Esophagitis. Gastroenterology. 2019;156(3):592–603.e10. doi: 10.1053/j.gastro.2018.10.051
  101. Bernardo D, Bieber T, Torres T. Lebrikizumab for the Treatment of Moderate-to-­Severe Atopic Dermatitis. American Journal of Clinical Dermatology. 2023;24(5):753–764. doi: 10.1007/s40257–023–00793–5
  102. Blauvelt A, Thyssen JP, Guttman-­Yassky E, Bieber T, Serra-­Baldrich E, Simpson E. Efficacy and safety of lebrikizumab in moderate-to-severe atopic dermatitis: 52‑week results of two randomized double-­blinded placebo-­controlled phase III trials. The British Journal of Dermatology. 2023;188(6):740–748. doi: 10.1093/bjd/ljad022
  103. Silverberg JI, Guttman-­Yassky E, Thaçi D, Irvine AD, Stein Gold L, Blauvelt A. Two Phase 3 Trials of Lebrikizumab for Moderate-to-­Severe Atopic Dermatitis. The New England Journal of Medicine. 2023;388(12):1080–1091. doi: 10.1056/NEJMoa2206714
  104. Kabashima K, Matsumura T, Komazaki H, Kawashima M, Nemolizumab-­JP01 Study Group. Trial of Nemolizumab and Topical Agents for Atopic Dermatitis with Pruritus. The New England Journal of Medicine. 2020;383(2):141–150. doi: 10.1056/NEJMoa1917006
  105. Silverberg JI, Pinter A, Pulka G, Poulin Y, Bouaziz JD, Wollenberg A. Phase 2B randomized study of nemolizumab in adults with moderate-to-severe atopic dermatitis and severe pruritus. The Journal of Allergy and Clinical Immunology. 2020;145(1):173–182. doi: 10.1016/j.jaci.2019.08.013
  106. Kabashima K, Matsumura T, Komazaki H, Kawashima M; Nemolizumab-­JP01 Study Group. Trial of Nemolizumab and Topical Agents for Atopic Dermatitis with Pruritus. N Engl J Med. 2020;383(2):141–150. doi: 10.1056/NEJMoa1917006
  107. Kang EG, Narayana PK, Pouliquen IJ, Lopez MC, Ferreira-­Cornwell MC, Getsy JA. Efficacy and safety of mepolizumab administered subcutaneously for moderate to severe atopic dermatitis. Allergy. 2020;75(4):950–953. doi: 10.1111/all.14050
  108. Roufosse F, Kahn JE, Rothenberg ME, Wardlaw AJ, Klion AD, Kirby SY. Efficacy and safety of mepolizumab in hypereosinophilic syndrome: A phase III, randomized, placebo-­controlled trial. The Journal of Allergy and Clinical Immunology. 2020;146(6):1397–1405. doi: 10.1016/j.jaci.2020.08.037
  109. Wechsler ME, Akuthota P, Jayne D, Khoury P, Klion A, Langford CA. Mepolizumab or Placebo for Eosinophilic Granulomatosis with Polyangiitis. The New England Journal of Medicine. 2017;376(20):1921–1932. doi: 10.1056/NEJMoa1702079
  110. Chupp GL, Bradford ES, Albers FC, Bratton DJ, Wang-­Jairaj J, Nelsen LM, Trevor JL, Magnan A, Ten Brinke A. Efficacy of mepolizumab add-on therapy on health-­related quality of life and markers of asthma control in severe eosinophilic asthma (MUSCA): a randomised, double-­blind, placebo-­controlled, parallel-­group, multicentre, phase 3b trial. Lancet Respir Med. 2017;5(5):390–400. doi: 10.1016/S2213-2600(17)30125-X
  111. Corren J, Weinstein S, Janka L, Zangrilli J, Garin M. Phase 3 Study of Reslizumab in Patients With Poorly Controlled Asthma: Effects Across a Broad Range of Eosinophil Counts. Chest. 2016;150(4):799–810. doi: 10.1016/j.chest.2016.03.018
  112. Manka LA, Guntur VP, Denson JL, Dunn RM, Dollin YT, Strand MJ. Efficacy and safety of reslizumab in the treatment of eosinophilic granulomatosis with polyangiitis. Annals of Allergy, Asthma & Immunology: Official Publication of the American College of Allergy, Asthma, & Immunology. 2021;126(6):696–701.e1. doi: 10.1016/j.anai.2021.01.035
  113. Weinstein SF, Katial RK, Bardin P, Korn S, McDonald M, Garin M. Effects of Reslizumab on Asthma Outcomes in a Subgroup of Eosinophilic Asthma Patients with Self-­Reported Chronic Rhinosinusitis with Nasal Polyps. The Journal of Allergy and Clinical Immunology. In Practice. 2019;7(2):589–596.e3. doi: 10.1016/j.jaip.2018.08.021
  114. Jackson DJ, Wechsler ME, Jackson DJ, Bernstein D, Korn S, Pfeffer PE, Chen R, Saito J, de Luíz Martinez G, Dymek L, Jacques L, Bird N, Schalkwijk S, Smith D, Howarth P, Pavord ID; SWIFT‑1 and SWIFT‑2 Investigators; SWIFT‑1 Investigators; SWIFT‑2 Investigators. Twice-­Yearly Depemokimab in Severe Asthma with an Eosinophilic Phenotype. N Engl J Med. 2024;391(24):2337–2349. doi: 10.1056/NEJMoa2406673
  115. Bachert C, Han JK, Desrosiers MY, Gevaert P, Heffler E, Hopkins C. Efficacy and safety of benralizumab in chronic rhinosinusitis with nasal polyps: A randomized, placebo-­controlled trial. The Journal of Allergy and Clinical Immunology. 2022;149(4):1309–1317.e12. doi: 10.1016/j.jaci.2021.08.030
  116. Bleecker ER, FitzGerald JM, Chanez P, Papi A, Weinstein SF, Barker P. Efficacy and safety of benralizumab for patients with severe asthma uncontrolled with high-dosage inhaled corticosteroids and long-acting β2‑agonists (SIROCCO): a randomised, multicentre, placebo-­controlled phase 3 trial. Lancet (London, England). 2016;388(10056):2115–2127. doi: 10.1016/S0140–6736 (16) 31324–1
  117. Cottu A, Groh M, Desaintjean C, Marchand-­Adam S, Guillevin L, Puechal X. Benralizumab for eosinophilic granulomatosis with polyangiitis. Annals of the Rheumatic Diseases. 2023;82(12): 1580–1586. doi: 10.1136/ard‑2023-224624.
  118. Criner GJ, Celli BR, Brightling CE, Agusti A, Papi A, Singh D. Benralizumab for the Prevention of COPD Exacerbations. The New England Journal of Medicine. 2019;381(11): 1023–1034. doi: 10.1056/NEJMoa1905248
  119. Guttman-­Yassky E, Bahadori L, Brooks L, Clark KL, Grindebacke H, Ho CN. Treating moderate-to-severe atopic dermatitis with benralizumab: results from the HILLIER study, a plain language summary. Immunotherapy. 2024;16(10):641–648. doi: 10.2217/imt‑2023-0319
  120. Amgen. A Dose-­Ranging, Double-­Blind, Placebo-­Controlled Study to Evaluate the Safety and Efficacy of Tezepelumab Alone or Combined With Topical Corticosteroids in Moderate-to-­Severe Atopic Dermatitis. Report number: NCT03809663, 2022 Mar [Accessed 8th December 2024]. https://clinicaltrials.gov/study/NCT03809663 [Accessed 8th December 2024].
  121. Corren J, Menzies-­Gow A, Chupp G, Israel E, Korn S, Cook B. Efficacy of Tezepelumab in Severe, Uncontrolled Asthma: Pooled Analysis of the PATHWAY and NAVIGATOR Clinical Trials. American Journal of Respiratory and Critical Care Medicine. 2023;208(1):13–24. doi: 10.1164/rccm.202210–2005OC
  122. Menzies-­Gow A, Corren J, Bourdin A, Chupp G, Israel E, Wechsler ME.Tezepelumab in Adults and Adolescents with Severe, Uncontrolled Asthma. The New England Journal of Medicine. 2021;384(19):1800–1809. doi: 10.1056/NEJMoa2034975
  123. Kelsen SG, Agache IO, Soong W, Israel E, Chupp GL, Cheung DS. Astegolimab (anti-­ST2) efficacy and safety in adults with severe asthma: A randomized clinical trial. The Journal of Allergy and Clinical Immunology. 2021;148(3):790–798. doi: 10.1016/j.jaci.2021.03.044.
  124. Waters M, McKinnell JA, Kalil AC, Martin GS, Buchman TG, Theess W. Astegolimab or Efmarodocokin Alfa in Patients With Severe COVID‑19 Pneumonia: A Randomized, Phase 2 Trial. Critical Care Medicine. 2023;51(1):103–116. doi: 10.1097/CCM.0000000000005716
  125. Wechsler ME, Ruddy MK, Pavord ID, Israel E, Rabe KF, Ford LB, Maspero JF, Abdulai RM, Hu CC, Martincova R, Jessel A, Nivens MC, Amin N, Weinreich DM, Yancopoulos GD, Goulaouic H. Efficacy and Safety of Itepekimab in Patients with Moderate-to-­Severe Asthma. N Engl J Med. 2021;385(18):1656–1668. doi: 10.1056/NEJMoa2024257
  126. England E, Rees DG, Scott IC, Carmen S, Chan DTY, Chaillan Huntington CE. Tozorakimab (MEDI3506): an anti-­IL‑33 antibody that inhibits IL‑33 signalling via ST2 and RAGE/EGFR to reduce inflammation and epithelial dysfunction. Scientific Reports. 2023;13(1):9825. doi: 10.1038/s41598–023–36642‑y
  127. Cao P, Xu W, Zhang L. Rituximab, Omalizumab, and Dupilumab Treatment Outcomes in Bullous Pemphigoid: A Systematic Review. Frontiers in Immunology. 2022;13:928621. doi: 10.3389/fimmu.2022.928621
  128. Chan SMH, Cro S, Cornelius V, Jahan R, Radulovic S, Lack G. Omalizumab for severe atopic dermatitis in 4- to 19‑year-olds: the ADAPT RCT. Southampton (UK): National Institute for Health and Care Research; 2022 May. [Accessed 8th December 2024].
  129. Gevaert P, Omachi TA, Corren J, Mullol J, Han J, Lee SE. Efficacy and safety of omalizumab in nasal polyposis: 2 randomized phase 3 trials. The Journal of Allergy and Clinical Immunology. 2020;146(3):595–605. doi: 10.1016/j.jaci.2020.05.032.
  130. Holm JG, Agner T, Sand C, Thomsen SF. Omalizumab for atopic dermatitis: case series and a systematic review of the literature. International Journal of Dermatology. 2017;56(1):18–26. doi: 10.1111/ijd.13353
  131. Tharp MD, Bernstein JA, Kavati A, Ortiz B, MacDonald K, Denhaerynck K. Benefits and Harms of Omalizumab Treatment in Adolescent and Adult Patients With Chronic Idiopathic (Spontaneous) Urticaria: A Meta-analysis of ‘Real-world’ Evidence. JAMA dermatology. 2019;155(1):29–38. doi: 10.1001/jamadermatol.2018.3447
  132. Omalizumab in IgE-Mediated Food Allergy: A Systematic Review and Meta-­Analysis — PubMed. https://pubmed.ncbi.nlm.nih.gov/36529441/ [Accessed 8th December 2024].
  133. Wedi B. Ligelizumab for the treatment of chronic spontaneous urticaria. Expert Opinion on Biological Therapy. 2020;20(8):853–861. doi: 10.1080/14712598.2020.1767061.
  134. Wood RA, Chinthrajah RS, Eggel A, Bottoli I, Gautier A, Woisetschlaeger M. The rationale for development of ligelizumab in food allergy. The World Allergy Organization Journal. 2022;15(9):100690. doi: 10.1016/j.waojou.2022.100690
  135. Guttman-­Yassky E, Brunner PM, Neumann AU, Khattri S, Pavel AB, Malik K. Efficacy and safety of fezakinumab (an IL‑22 monoclonal antibody) in adults with moderate-to-severe atopic dermatitis inadequately controlled by conventional treatments: A randomized, double-­blind, phase 2a trial. Journal of the American Academy of Dermatology. 2018;78(5):872–881.e6. doi: 10.1016/j.jaad.2018.01.016
  136. Bangert C, Loesche C, Skvara H, Fölster-­Holst R, Lacour JP, Jones J. IgE Depletion with Ligelizumab Does Not Significantly Improve Clinical Symptoms in Patients with Moderate-to-­Severe Atopic Dermatitis. The Journal of Investigative Dermatology. 2023;143(10):1896–1905.e8. doi: 10.1016/j.jid.2023.01.040
  137. Jacobi A, Antoni C, Manger B, Schuler G, Hertl M. Infliximab in the treatment of moderate to severe atopic dermatitis. Journal of the American Academy of Dermatology. 2005;52(3 Pt 1):522–526. doi: 10.1016/j.jaad.2004.11.022
  138. Ungar B, Pavel AB, Li R, Kimmel G, Nia J, Hashim P. Phase 2 randomized, double-­blind study of IL‑17 targeting with secukinumab in atopic dermatitis. The Journal of Allergy and Clinical Immunology. 2021;147(1):394–397. doi: 10.1016/j.jaci.2020.04.055
  139. Husein-­ElAhmed H, Steinhoff M. Effectiveness of ustekinumab in patients with atopic dermatitis: analysis of real-world evidence. The Journal of Dermatological Treatment. 2022;33(4):1838–1843. doi: 10.1080/09546634.2021.1914315
  140. Levy LL, Urban J, King BA. Treatment of recalcitrant atopic dermatitis with the oral Janus kinase inhibitor tofacitinib citrate. Journal of the American Academy of Dermatology. 2015;73(3):395–399. doi: 10.1016/j.jaad.2015.06.045
  141. Bissonnette R, Papp KA, Poulin Y, Gooderham M, Raman M, Mallbris L. Topical tofacitinib for atopic dermatitis: a phase IIa randomized trial. The British Journal of Dermatology. 2016;175(5):902–911. doi: 10.1111/bjd.14871
  142. Tanimoto A, Shinozaki Y, Yamamoto Y, Katsuda Y, Taniai-­Riya E, Toyoda K. A novel JAK inhibitor JTE‑052 reduces skin inflammation and ameliorates chronic dermatitis in rodent models: Comparison with conventional therapeutic agents. Experimental Dermatology. 2018;27(1):22–29. doi: 10.1111/exd.13370
  143. Nakagawa H, Nemoto O, Igarashi A, Saeki H, Murata R, Kaino H. Long-term safety and efficacy of delgocitinib ointment, a topical Janus kinase inhibitor, in adult patients with atopic dermatitis. The Journal of Dermatology. 2020;47(2):114–120. doi: 10.1111/1346–8138.15173
  144. Nakagawa H, Nemoto O, Igarashi A, Saeki H, Kaino H, Nagata T. Delgocitinib ointment, a topical Janus kinase inhibitor, in adult patients with moderate to severe atopic dermatitis: A phase 3, randomized, double-­blind, vehicle-­controlled study and an open-label, long-term extension study. Journal of the American Academy of Dermatology. 2020;82(4):823–831. doi: 10.1016/j.jaad.2019.12.015
  145. Nakagawa H, Igarashi A, Saeki H, Kabashima K, Tamaki T, Kaino H. Safety, efficacy, and pharmacokinetics of delgocitinib ointment in infants with atopic dermatitis: A phase 3, open-label, and long-term study. Allergology International: Official Journal of the Japanese Society of Allergology. 2024;73(1):137–142. doi: 10.1016/j.alit.2023.04.003
  146. Papp K, Szepietowski JC, Kircik L, Toth D, Eichenfield LF, Leung DYM. Efficacy and safety of ruxolitinib cream for the treatment of atopic dermatitis: Results from 2 phase 3, randomized, double-­blind studies. Journal of the American Academy of Dermatology. 2021;85(4):863–872. doi: 10.1016/j.jaad.2021.04.085
  147. Reich K, Kabashima K, Peris K, Silverberg JI, Eichenfield LF, Bieber T. Efficacy and Safety of Baricitinib Combined With Topical Corticosteroids for Treatment of Moderate to Severe Atopic Dermatitis: A Randomized Clinical Trial. JAMA dermatology. 2020;156(12):1333–1343. doi: 10.1001/jamadermatol.2020.3260
  148. Silverberg JI, Simpson EL, Wollenberg A, Bissonnette R, Kabashima K, DeLozier AM. Long-term Efficacy of Baricitinib in Adults With Moderate to Severe Atopic Dermatitis Who Were Treatment Responders or Partial Responders: An Extension Study of 2 Randomized Clinical Trials. JAMA dermatology. 2021;157(6):691–699. doi: 10.1001/jamadermatol.2021.1273
  149. Blauvelt A, Ladizinski B, Prajapati VH, Laquer V, Fischer A, Eisman S. Efficacy and safety of switching from dupilumab to upadacitinib versus continuous upadacitinib in moderate-to-severe atopic dermatitis: Results from an open-label extension of the phase 3, randomized, controlled trial (Heads Up). Journal of the American Academy of Dermatology. 2023;89(3):478–485. doi: 10.1016/j.jaad.2023.05.033
  150. Guttman-­Yassky E, Thaçi D, Pangan AL, Hong HCH, Papp KA, Reich K. Upadacitinib in adults with moderate to severe atopic dermatitis: 16‑week results from a randomized, placebo-­controlled trial. The Journal of Allergy and Clinical Immunology. 2020;145(3):877–884. doi: 10.1016/j.jaci.2019.11.025
  151. Simpson EL, Papp KA, Blauvelt A, Chu CY, Hong HCH, Katoh N. Efficacy and Safety of Upadacitinib in Patients With Moderate to Severe Atopic Dermatitis: Analysis of Follow-up Data From the Measure Up 1 and Measure Up 2 Randomized Clinical Trials. JAMA dermatology. 2022;158(4):404–413. doi: 10.1001/jamadermatol.2022.0029
  152. Guttman-­Yassky E, Teixeira HD, Simpson EL, Papp KA, Pangan AL, Blauvelt A, Thaçi D, Chu CY, Hong HC, Katoh N, Paller AS, Calimlim B, Gu Y, Hu X, Liu M, Yang Y, Liu J, Tenorio AR, Chu AD, Irvine AD. Once-daily upadacitinib versus placebo in adolescents and adults with moderate-to-severe atopic dermatitis (Measure Up 1 and Measure Up 2): results from two replicate double-­blind, randomised controlled phase 3 trials. Lancet. 2021;397(10290):2151–2168. doi: 10.1016/S0140–6736 (21) 00588–2
  153. Gooderham MJ, Forman SB, Bissonnette R, Beebe JS, Zhang W, Banfield C. Efficacy and Safety of Oral Janus Kinase 1 Inhibitor Abrocitinib for Patients With Atopic Dermatitis: A Phase 2 Randomized Clinical Trial. JAMA dermatology. 2019;155(12):1371–1379. doi: 10.1001/jamadermatol.2019.2855
  154. Silverberg JI, Simpson EL, Thyssen JP, Gooderham M, Chan G, Feeney C. Efficacy and Safety of Abrocitinib in Patients With Moderate-to-­Severe Atopic Dermatitis: A Randomized Clinical Trial. JAMA dermatology. 2020;156(8):863–873. doi: 10.1001/jamadermatol.2020.1406
  155. Wan H, Jia H, Xia T, Zhang D. Comparative efficacy and safety of abrocitinib, baricitinib, and upadacitinib for moderate-to-severe atopic dermatitis: A network meta-analysis. Dermatologic Therapy. 2022;35(9): e15636. doi: 10.1111/dth.15636

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».