The role of type 2 inflammation in the pathogenesis of atopic dermatitis
- Авторлар: Elisyutina O.G.1,2, Smolnikov E.V.1,2, Chernushevich D.D.1,2, Litovkina A.O.1,2, Byazrova M.G.1,2, Levkova E.A.2, Fedenko E.S.1
-
Мекемелер:
- National Research Center - Institute of Immunology FMBA of Russia
- RUDN University
- Шығарылым: Том 29, № 3 (2025): ONCOLOGY
- Беттер: 365-384
- Бөлім: IMMUNOLOGY
- URL: https://journal-vniispk.ru/2313-0245/article/view/349492
- DOI: https://doi.org/10.22363/2313-0245-2025-29-3-365-384
- EDN: https://elibrary.ru/QSMOXR
- ID: 349492
Дәйексөз келтіру
Толық мәтін
Аннотация
Relevance. Atopic dermatitis (AD) is classified as a chronic immune-mediated disease, with its pathogenesis rooted in genetic predisposition and immune response dysregulation, predominantly driven by T2‑inflammatory reactions. This review highlights key aspects of the immunopathogenesis of AD, emphasizing its systemic inflammatory nature linked to T2‑immune dysregulation. This leads to the activation of cytokines such as IL‑4, IL‑5, IL‑13, and IL‑31. The article analyzes modern treatment approaches, including targeted therapy aimed at blocking T2 cytokines, stressing the importance of early intervention to prevent complications and the development of the atopic march. Understanding T2‑inflammation mechanisms opens new opportunities for developing effective personalized therapies for AD. Conclusion. Type 2 inflammation plays a pivotal role in the pathogenesis of AD, driving chronic inflammation, skin barrier dysfunction, and the clinical manifestations of the disease. Key mediators of T2 inflammation-including IL‑4, IL‑5, IL‑13, and IL‑31‑regulate the activation of various immune-competent cells, not only amplifying inflammation but also contributing to the development of pruritus. This, in turn, establishes the self-perpetuating “itch-scratch” cycle, which exacerbates skin damage and further stimulates inflammatory processes. Impaired skin barrier function also facilitates the penetration of allergens and microbial agents, further activating the immune response and worsening disease severity. Studying type 2 inflammation as a central mechanism in AD pathogenesis not only advances our understanding of the disease but also facilitates the development of new therapeutic strategies to control AD and improve patients’ quality of life, which remains a priority in contemporary immunology, allergology, and dermatology.
Негізгі сөздер
Авторлар туралы
Olga Elisyutina
National Research Center - Institute of Immunology FMBA of Russia; RUDN University
Хат алмасуға жауапты Автор.
Email: el-olga@yandex.ru
ORCID iD: 0000-0002-4609-2591
SPIN-код: 9567-1894
Moscow, Russian Federation
Evgenii Smolnikov
National Research Center - Institute of Immunology FMBA of Russia; RUDN University
Email: el-olga@yandex.ru
ORCID iD: 0000-0003-1302-4178
SPIN-код: 4874-8100
Moscow, Russian Federation
Daria Chernushevich
National Research Center - Institute of Immunology FMBA of Russia; RUDN University
Email: el-olga@yandex.ru
ORCID iD: 0000-0003-0006-2773
SPIN-код: 2497-5608
Moscow, Russian Federation
Alla Litovkina
National Research Center - Institute of Immunology FMBA of Russia; RUDN University
Email: el-olga@yandex.ru
ORCID iD: 0000-0002-5021-9276
SPIN-код: 2337-7930
Moscow, Russian Federation
Maria Byazrova
National Research Center - Institute of Immunology FMBA of Russia; RUDN University
Email: el-olga@yandex.ru
ORCID iD: 0000-0002-9858-7596
SPIN-код: 4317-9042
Moscow, Russian Federation
Elena Levkova
RUDN University
Email: el-olga@yandex.ru
SPIN-код: 6407-9880
Moscow, Russian Federation
Elena Fedenko
National Research Center - Institute of Immunology FMBA of Russia
Email: el-olga@yandex.ru
ORCID iD: 0000-0003-3358-5087
SPIN-код: 5012-7242
Moscow, Russian Federation
Әдебиет тізімі
- Weidinger S, Novak N. Atopic dermatitis. The Lancet. 2016;387(10023):1109–1122. doi: 10.1016/S0140-6736(15)00149-X
- Kubanov AA, Namazova-Baranova LS, Khaitov RM, Ilyina NI, Alekseeva AA, Ambarchian ET, Artemyeva S, Arshinskiy MI, Astafyeva NG, Vishneva EA, Volnukhin VA, Danilycheva IV, Elisyutina OG, Epishev RV, Zhestkov AV, Zhilova MB, Zhukova OV, Zaslavsky DV, Znamenskaya LF, Karamova AE, Korotky NG, Kokhan MM, Kruglova LS, Kungurov NV, Levina JG, Lvov AN, Materikin AI, Mishina OS, Monakhov KN, Murashkin NN, Nenasheva NM, Pampura AN, Plakhova XI, Potekaev NN, Prytulо OA, Raznatovskiy KI, Sapuntsova SG, Selimzianova LR, Skorokhodkina OV, Fedenko ES, Fomina DS, Frigo NV, Frolova ZV, Khaitov MR, Chikin VV. Atopic dermatitis. Russian Journal of Allergy. 2021;18(3):44–92. (In Russian). doi: 10.36691/RJA1474
- Haddad EB, Cyr SL, Arima K, McDonald RA, Levit NA, Nestle FO. Current and Emerging Strategies to Inhibit Type 2 Inflammation in Atopic Dermatitis. Dermatology and Therapy. 2022;12(7): 1501–1533. doi: 10.1007/s13555–022–00737–7
- Beck LA, Cork MJ, Amagai M, De Benedetto A, Kabashima K, Hamilton JD. Type 2 Inflammation Contributes to Skin Barrier Dysfunction in Atopic Dermatitis. JID Innovations. 2022;2(5):100131. doi: 10.1016/j.xjidi.2022.100131
- Laughter MR, Maymone MBC, Mashayekhi S, Arents BWM, Karimkhani C, Langan SM, Dellavalle RP, Flohr C. The global burden of atopic dermatitis: lessons from the Global Burden of Disease Study 1990–2017. The British Journal of Dermatology. 2021;184(2):304–309. doi: 10.1111/bjd.19580
- Nemer AA, Zhukova OV, Tereshchenko GP. Clinical features and risk factors of IgE-independent atopic dermatitis in children. RUDN Journal of Medicine. 2023;27(1):90–100. (In Russian). doi: 10.22363/2313-0245-2023-27-1-90-100
- Barbarot S, Auziere S, Gadkari A, Girolomoni G, Puig L, Simpson EL. Epidemiology of atopic dermatitis in adults: Results from an international survey. Allergy. 2018;73(6):1284–1293. doi: 10.1111/all.13401
- Italian Adult Atopic Dermatitis Study Group, Megna M, Patruno C, Balato A, Rongioletti F, Stingeni L. An Italian multicentre study on adult atopic dermatitis: persistent versus adult-onset disease. Archives of Dermatological Research. 2017;309(6):443–452. doi: 10.1007/s00403-017-1739‑y
- Oliveira C, Torres T. More than skin deep: the systemic nature of atopic dermatitis. European Journal of Dermatology. 2019;29(3):250–258. doi: 10.1684/ejd.2019.3557
- Schuler CF, Billi AC, Maverakis E, Tsoi LC, Gudjonsson JE. Novel insights into atopic dermatitis. Journal of Allergy and Clinical Immunology. 2023;151(5):1145–1154. doi: 10.1016/j.jaci.2022.10.023
- Gandhi NA, Bennett BL, Graham NMH, Pirozzi G, Stahl N, Yancopoulos GD. Targeting key proximal drivers of type 2 inflammation in disease. Nature Reviews. Drug Discovery. 2016;15(1):35–50. doi: 10.1038/nrd4624
- Junttila IS, Mizukami K, Dickensheets H, Meier-Schellersheim M, Yamane H, Donnelly RP. Tuning sensitivity to IL‑4 and IL‑13: differential expression of IL‑4Rα, IL‑13Rα1, and γc regulates relative cytokine sensitivity. The Journal of Experimental Medicine. 2008;205(11):2595–2608. doi: 10.1084/jem.20080452
- Licona-Limón P, Kim LK, Palm NW, Flavell RA. TH2, allergy and group 2 innate lymphoid cells. Nature. Immunology. 2013;14(6):536–542. doi: 10.1038/ni.2617
- Roufosse F. Targeting the Interleukin‑5 Pathway for Treatment of Eosinophilic Conditions Other than Asthma. Frontiers in Medicine. 2018;5:49. doi: 10.3389/fmed.2018.00049
- Bağci IS, Ruzicka T. IL‑31: A new key player in dermatology and beyond. The Journal of Allergy and Clinical Immunology. 2018;141(3):858–866. doi: 10.1016/j.jaci.2017.10.045
- Murdaca G, Greco M, Tonacci A, Negrini S, Borro M, Puppo F, Gangemi S. IL‑33/IL‑31 Axis in Immune-Mediated and Allergic Diseases. Int J Mol Sci. 2019;20(23):5856. doi: 10.3390/ijms20235856
- Chakraborty S, Kubatzky KF, Mitra DK. An Update on Interleukin‑9: From Its Cellular Source and Signal Transduction to Its Role in Immunopathogenesis. International Journal of Molecular Sciences. 2019;20(9):2113. doi: 10.3390/ijms20092113
- Chung F. Anti-inflammatory cytokines in asthma and allergy: interleukin‑10, interleukin‑12, interferon-gamma. Mediators of Inflammation. 2001;10(2):51–59. doi: 10.1080/09629350120054518
- Kuang PP, Liu XQ, Li CG, He BX, Xie YC, Wu ZC. Mesenchymal stem cells overexpressing interleukin‑10 prevent allergic airway inflammation. Stem Cell Research & Therapy. 2023;14(1):369. doi: 10.1186/s13287-023-03602-2
- Hawrylowicz CM, O’Garra A. Potential role of interleukin‑10‑secreting regulatory T cells in allergy and asthma. Nature Reviews. Immunology. 2005;5(4):271–283. doi: 10.1038/nri1589
- Salter BM, Oliveria JP, Nusca G, Smith SG, Tworek D, Mitchell PD. IL‑25 and IL‑33 induce Type 2 inflammation in basophils from subjects with allergic asthma. Respiratory Research. 2016;17:5. doi: 10.1186/s12931-016-0321‑z
- Saenz SA, Siracusa MC, Perrigoue JG, Spencer SP, Urban JF Jr, Tocker JE, Budelsky AL, Kleinschek MA, Kastelein RA, Kambayashi T, Bhandoola A, Artis D. IL25 elicits a multipotent progenitor cell population that promotes T(H)2 cytokine responses. Nature. 2010;464(7293):1362–6. doi: 10.1038/nature08901
- Noda S, Krueger JG, Guttman-Yassky E. The translational revolution and use of biologics in patients with inflammatory skin diseases. Journal of Allergy and Clinical Immunology. 2015;135(2):324–336. doi: 10.1016/j.jaci.2014.11.015
- Luo J, Zhu Z, Zhai Y, Zeng J, Li L, Wang D. The Role of TSLP in Atopic Dermatitis: From Pathogenetic Molecule to Therapeutical Target. Mediators of Inflammation. 2023;2023:1–8. doi: 10.1155/2023/7697699.
- Gordon S, Martinez FO. Alternative Activation of Macrophages: Mechanism and Functions. Immunity. 2010;32(5):593–604. doi: 10.1016/j.immuni.2010.05.007
- Munder M, Eichmann K, Modolell M. Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: competitive regulation by CD4+ T cells correlates with Th1/Th2 phenotype. Journal of Immunology. Baltimore. 1998;160(11):5347–5354.
- Zhu X, Pribis JP, Rodriguez PC, Morris SM, Vodovotz Y, Billiar TR. The Central Role of Arginine Catabolism in T-Cell Dysfunction and Increased Susceptibility to Infection After Physical Injury. Annals of Surgery. 2014;259(1):171–178. doi: 10.1097/SLA.0b013e31828611f8
- Maarsingh H, Zaagsma J, Meurs H. Arginase: a key enzyme in the pathophysiology of allergic asthma opening novel therapeutic perspectives. British Journal of Pharmacology. 2009;158(3):652–664. doi: 10.1111/j.1476-5381.2009.00374.x
- Esser-von Bieren J, Mosconi I, Guiet R, Piersgilli A, Volpe B, Chen F. Antibodies Trap Tissue Migrating Helminth Larvae and Prevent Tissue Damage by Driving IL‑4Rα-Independent Alternative Differentiation of Macrophages. Wynn TA (ed.) PLoS Pathogens. 2013;9(11): e1003771. doi: 10.1371/journal.ppat.1003771.
- Nair MG, Du Y, Perrigoue JG, Zaph C, Taylor JJ, Goldschmidt M. Alternatively activated macrophage-derived RELM-α is a negative regulator of type 2 inflammation in the lung. Journal of Experimental Medicine. 2009;206(4):937–952. doi: 10.1084/jem.20082048.
- Granato A, Hayashi EA, Baptista BJA, Bellio M, Nobrega A. IL‑4 regulates Bim expression and promotes B cell maturation in synergy with BAFF conferring resistance to cell death at negative selection checkpoints. Journal of Immunology. Baltimore. 2014;192(12):5761–5775. doi: 10.4049/jimmunol.1300749
- Garcovich S, Maurelli M, Gisondi P, Peris K, Yosipovitch G, Girolomoni G. Pruritus as a Distinctive Feature of Type 2 Inflammation. Vaccines. 2021;9(3):303. doi: 10.3390/vaccines9030303
- Murashkin NN, Opryatin LA, Epishev RV, Materikin AI, Ambarchian ET, Ivanov RA, et al. Pruritus and Atopic Dermatitis: from Etiological Features to Management. Current Pediatrics. 2020;19(6):468–476. doi: 10.15690/vsp.v19i6.2151
- Yuan Q, Campanella GS, Colvin RA, Hamilos DL, Jones KJ, Mathew A. Membrane-bound eotaxin‑3 mediates eosinophil transepithelial migration in IL‑4‑stimulated epithelial cells. European Journal of Immunology. 2006;36(10):2700–2714. doi: 10.1002/eji.200636112
- Nagase H, Ueki S, Fujieda S. The roles of IL‑5 and anti-IL‑5 treatment in eosinophilic diseases: Asthma, eosinophilic granulomatosis with polyangiitis, and eosinophilic chronic rhinosinusitis. Allergology International: Official Journal of the Japanese Society of Allergology. 2020;69(2):178–186. doi: 10.1016/j.alit.2020.02.002
- Licona-Limón P, Henao-Mejia J, Temann AU, Gagliani N, Licona-Limón I, Ishigame H. Th9 Cells Drive Host Immunity against Gastrointestinal Worm Infection. Immunity. 2013;39(4):744–757. doi: 10.1016/j.immuni.2013.07.020
- Goswami R, Kaplan MH. A brief history of IL‑9. Journal of Immunology. Baltimore. 2011;186(6):3283–3288. doi: 10.4049/jimmunol.1003049
- Bazzoni F, Tamassia N, Rossato M, Cassatella MA. Understanding the molecular mechanisms of the multifaceted IL‑10‑mediated anti-inflammatory response: lessons from neutrophils. European Journal of Immunology. 2010;40(9):2360–2368. doi: 10.1002/eji.200940294
- Fang D, Zhu J. Molecular switches for regulating the differentiation of inflammatory and IL‑10‑producing anti-inflammatory T-helper cells. Cellular and molecular life sciences: CMLS. 2020;77(2):289–303. doi: 10.1007/s00018-019-03277-0
- Haben I, Hartmann W, Specht S, Hoerauf A, Roers A, Müller W, Breloer M. T-cell-derived, but not B-cell-derived, IL‑10 suppresses antigen-specific T-cell responses in Litomosoides sigmodontis-infected mice. Eur J Immunol. 2013;43(7):1799–805. doi: 10.1002/eji.201242929
- Matsuoka T, Shamji MH, Durham SR. Allergen immunotherapy and tolerance. Allergology International: Official Journal of the Japanese Society of Allergology. 2013;62(4):403–413. doi: 10.2332/allergolint.13-RAI‑0650
- Rojas OL, Pröbstel AK, Porfilio EA, Wang AA, Charabati M, Sun T. Recirculating Intestinal IgA-Producing Cells Regulate Neuroinflammation via IL‑10. Cell. 2019;176(3):610–624.e18. doi: 10.1016/j.cell.2018.11.035
- Sun H, Chen N, Yang X, Xia Y, Wu D. Effects induced by polyethylene microplastics oral exposure on colon mucin release, inflammation, gut microflora composition and metabolism in mice. Ecotoxicology and Environmental Safety. 2021;220:112340. doi: 10.1016/j.ecoenv.2021.112340
- Furue M, Yamamura K, Kido-Nakahara M, Nakahara T, Fukui Y. Emerging role of interleukin‑31 and interleukin‑31 receptor in pruritus in atopic dermatitis. Allergy. 2018;73(1):29–36. doi: 10.1111/all.13239
- Cornelissen C, Marquardt Y, Czaja K, Wenzel J, Frank J, Lüscher-Firzlaff J. IL‑31 regulates differentiation and filaggrin expression in human organotypic skin models. The Journal of Allergy and Clinical Immunology. 2012;129(2):426–433. doi: 10.1016/j.jaci.2011.10.042
- Valizadeh A, Khosravi A, Zadeh LJ, Parizad EG. Role of IL‑25 in Immunity. Journal of clinical and diagnostic research: JCDR. 2015;9(4): OE01–04. doi: 10.7860/JCDR/2015/12235.5814
- Wang YH, Angkasekwinai P, Lu N, Voo KS, Arima K, Hanabuchi S. IL‑25 augments type 2 immune responses by enhancing the expansion and functions of TSLP-DC-activated Th2 memory cells. The Journal of Experimental Medicine. 2007;204(8):1837–1847. doi: 10.1084/jem.20070406
- Fallon PG, Ballantyne SJ, Mangan NE, Barlow JL, Dasvarma A, Hewett DR, McIlgorm A, Jolin HE, McKenzie AN. Identification of an interleukin (IL)-25‑dependent cell population that provides IL‑4, IL‑5, and IL‑13 at the onset of helminth expulsion. J Exp Med. 2006;203(4):1105–16. doi: 10.1084/jem.20051615
- Drake LY, Kita H. IL‑33: biological properties, functions, and roles in airway disease. Immunological Reviews. 2017;278(1):173–184. doi: 10.1111/imr.12552
- Endo Y, Hirahara K, Iinuma T, Shinoda K, Tumes DJ, Asou HK. The interleukin‑33‑p38 kinase axis confers memory T helper 2 cell pathogenicity in the airway. Immunity. 2015;42(2):294–308. doi: 10.1016/j.immuni.2015.01.016
- Shikotra A, Choy DF, Ohri CM, Doran E, Butler C, Hargadon B. Increased expression of immunoreactive thymic stromal lymphopoietin in patients with severe asthma. The Journal of Allergy and Clinical Immunology. 2012;129(1):104–111.e1–9. doi: 10.1016/j.jaci.2011.08.031
- Tatsuno K, Fujiyama T, Yamaguchi H, Waki M, Tokura Y. TSLP Directly Interacts with Skin-Homing Th2 Cells Highly Expressing its Receptor to Enhance IL‑4 Production in Atopic Dermatitis. J Invest Dermatol. 2015;135(12):3017–3024. doi: 10.1038/jid.2015.318
- Ito T, Wang YH, Duramad O, Hori T, Delespesse GJ, Watanabe N. TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. The Journal of Experimental Medicine. 2005;202(9):1213–1223. doi: 10.1084/jem.20051135
- Sano Y, Masuda K, Tamagawa-Mineoka R, Matsunaka H, Murakami Y, Yamashita R, Morita E, Katoh N. Thymic stromal lymphopoietin expression is increased in the horny layer of patients with atopic dermatitis. Clin Exp Immunol. 2013;171(3):330–7. doi: 10.1111/cei.12021
- Carr S, Watson W. Eosinophilic esophagitis. Allergy, Asthma, and Clinical Immunology: Official Journal of the Canadian Society of Allergy and Clinical Immunology. 2011;7(Suppl 1): S8. doi: 10.1186/1710-1492-7-S1-S8
- Garudadri S, Woodruff PG. Targeting Chronic Obstructive Pulmonary Disease Phenotypes, Endotypes, and Biomarkers. Annals of the American Thoracic Society. 2018;15(Suppl 4): S234–S238. doi: 10.1513/AnnalsATS.201808-533MG
- Kulthanan K, Tuchinda P, Nitiyarom R, Chunharas A, Chantaphakul H, Aunhachoke K, Chularojanamontri L, Rajatanavin N, Jirapongsananuruk O, Vichyanond P, Chatchatee P, Sangsupawanich P, Wananukul S, Singalavanija S, Trakanwittayarak S, Rerkpattanapipat T, Thongngarm T, Wisuthsarewong W, Limpongsanurak W, Kamchaisatian W, Noppakun N. Clinical practice guidelines for the diagnosis and management of atopic dermatitis. Asian Pac J Allergy Immunol. 2021;39(3):145–155. doi: 10.12932/AP‑010221–1050
- Torres T, Ferreira EO, Gonçalo M, Mendes-Bastos P, Selores M, Filipe P. Update on Atopic Dermatitis. Acta Médica Portuguesa. 2019;32(9):606–613. doi: 10.20344/amp.11963
- Moosbrugger-Martinz V, Leprince C, Méchin MC, Simon M, Blunder S, Gruber R. Revisiting the Roles of Filaggrin in Atopic Dermatitis. International Journal of Molecular Sciences. 2022;23(10): 5318. doi: 10.3390/ijms23105318
- Furue M. Regulation of Filaggrin, Loricrin, and Involucrin by IL‑4, IL‑13, IL‑17A, IL‑22, AHR, and NRF2: Pathogenic Implications in Atopic Dermatitis. International Journal of Molecular Sciences. 2020;21(15):5382. doi: 10.3390/ijms21155382
- van Smeden J, Bouwstra JA. Stratum Corneum Lipids: Their Role for the Skin Barrier Function in Healthy Subjects and Atopic Dermatitis Patients. Current Problems in Dermatology. 2016;49:8–26. doi: 10.1159/000441540
- Suwanchote S, Waitayangkoon P, Chancheewa B, Inthanachai T, Niwetbowornchai N, Edwards SW, Virakul S, Thammahong A, Kiatsurayanon C, Rerknimitr P, Chiewchengchol D. Role of antimicrobial peptides in atopic dermatitis. Int J Dermatol. 2022;61(5):532–540. doi: 10.1111/ijd.15814
- Yang G, Seok JK, Kang HC, Cho YY, Lee HS, Lee JY. Skin Barrier Abnormalities and Immune Dysfunction in Atopic Dermatitis. International Journal of Molecular Sciences. 2020;21(8): 2867. doi: 10.3390/ijms21082867.
- Palmer CNA, Irvine AD, Terron-Kwiatkowski A, Zhao Y, Liao H, Lee SP. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nature Genetics. 2006;38(4):441–446. doi: 10.1038/ng1767
- Szegedi A. Filaggrin mutations in early- and late-onset atopic dermatitis. Br J Dermatol. 2015;172(2):320–1. doi: 10.1111/bjd.13534
- Sahlén P, Spalinskas R, Asad S, Mahapatra KD, Höjer P, Anil A. Chromatin interactions in differentiating keratinocytes reveal novel atopic dermatitis- and psoriasis-associated genes. The Journal of Allergy and Clinical Immunology. 2021;147(5):1742–1752. doi: 10.1016/j.jaci.2020.09.035
- DeVore SB, Stevens ML, He H, Biagini JM, Kroner JW, Martin LJ. Novel role for caspase recruitment domain family member 14 and its genetic variant rs11652075 in skin filaggrin homeostasis. The Journal of Allergy and Clinical Immunology. 2022;149(2):708–717. doi: 10.1016/j.jaci.2021.07.003
- Thyssen JP, Kezic S. Causes of epidermal filaggrin reduction and their role in the pathogenesis of atopic dermatitis. J Allergy Clin Immunol. 2014;134(4):792–9. doi: 10.1016/j.jaci.2014.06.014
- Suárez-Fariñas M, Tintle SJ, Shemer A, Chiricozzi A, Nograles K, Cardinale I, Duan S, Bowcock AM, Krueger JG, Guttman-Yassky E. Non-lesional atopic dermatitis (AD) skin is characterized by broad terminal differentiation defects and variable immune abnormalities. The Journal of allergy and clinical immunology. 2011;127(4):954–64.e1–4. doi: 10.1016/j.jaci.2010.12.1124
- De Benedetto A, Rafaels NM, McGirt LY, Ivanov AI, Georas SN, Cheadle C. Tight Junction Defects in Atopic Dermatitis. The Journal of allergy and clinical immunology. 2011;127(3):773–786.e7. doi: 10.1016/j.jaci.2010.10.018
- Elias PM, Wakefield J. Mechanisms of abnormal lamellar body secretion and the dysfunctional skin barrier in atopic dermatitis. The Journal of allergy and clinical immunology. 2014;134(4):781–791.e1. doi: 10.1016/j.jaci.2014.05.048
- Leung DY, Guttman-Yassky E. Deciphering the complexities of atopic dermatitis: shifting paradigms in treatment approaches. The Journal of allergy and clinical immunology. 2014;134(4):769–79. doi: 10.1016/j.jaci.2014.08.008
- Langan SM, Irvine AD, Weidinger S. Atopic dermatitis. Lancet. 2020;396(10247):345–360. doi: 10.1016/S0140-6736 (20) 31286-1
- Elhaji Y, Sasseville D, Pratt M, Asai Y, Matheson K, McLean WHI. Filaggrin gene loss-of-function mutations constitute a factor in patients with multiple contact allergies. Contact Dermatitis. 2019;80(6):354–358. doi: 10.1111/cod.13268
- Campana R, Dzoro S, Mittermann I, Fedenko E, Elisyutina O, Khaitov M. Molecular aspects of allergens in atopic dermatitis. Current Opinion in Allergy & Clinical Immunology. 2017;17(4):269–277. doi: 10.1097/ACI.0000000000000378
- Silverberg JI, Hanifin J, Simpson EL. Climatic factors are associated with childhood eczema prevalence in US. The Journal of investigative dermatology. 2013;133(7):1752–1759. doi: 10.1038/jid.2013.19.
- Sargen MR, Hoffstad O, Margolis DJ. Warm, humid, and high sun exposure climates are associated with poorly controlled eczema: PEER (Pediatric Eczema Elective Registry) cohort, 2004–2012. J Invest Dermatol. 2014;134(1):51–57. doi: 10.1038/jid.2013.274
- Towell AM, Feuillie C, Vitry P, Da Costa TM, Mathelié-Guinlet M, Kezic S. Staphylococcus aureus binds to the N-terminal region of corneodesmosin to adhere to the stratum corneum in atopic dermatitis. Proceedings of the National Academy of Sciences of the United States of America. 2021;118(1): e2014444118. doi: 10.1073/pnas.2014444118
- Gonzalez T, Stevens ML, Baatyrbek Kyzy A, Alarcon R, He H, Kroner JW. Biofilm propensity of Staphylococcus aureus skin isolates is associated with increased atopic dermatitis severity and barrier dysfunction in the MPAACH pediatric cohort. Allergy. 2021;76(1):302–313. doi: 10.1111/all.14489
- Reginald K, Westritschnig K, Werfel T, Heratizadeh A, Novak N, Focke-Tejkl M. IgE antibody reactivity to bacterial antigens in atopic dermatitis patients. Clinical and experimental allergy: journal of the British Society for Allergy and Clinical Immunology. 2010;41(3):357. doi: 10.1111/j.1365–2222.2010.03655.x
- Tomczak H, Wróbel J, Jenerowicz D, Sadowska-Przytocka A, Wachal M, Adamski Z. The role of Staphylococcus aureus in atopic dermatitis: microbiological and immunological implications. Advances in Dermatology and Allergology/Postȩpy Dermatologii i Alergologii. 2019;36(4):485–491. doi: 10.5114/ada.2018.77056
- Nakamura Y, Oscherwitz J, Cease KB, Chan SM, Muñoz-Planillo R, Hasegawa M, Villaruz AE, Cheung GY, McGavin MJ, Travers JB, Otto M, Inohara N, Núñez G. Staphylococcus δ-toxin induces allergic skin disease by activating mast cells. Nature. 2013;503(7476):397–401. doi: 10.1038/nature12655
- Nakatsuji T, Chen TH, Two AM, Chun KA, Narala S, Geha RS. Staphylococcus aureus exploits epidermal barrier defects in atopic dermatitis to trigger cytokine expression. The Journal of investigative dermatology. 2016;136(11):2192–2200. doi: 10.1016/j.jid.2016.05.127
- Miajlovic H, Fallon PG, Irvine AD, Foster TJ. Effect of filaggrin breakdown products on growth of and protein expression by Staphylococcus aureus. The Journal of Allergy and Clinical Immunology. 2010;126(6):1184–1190.e3. doi: 10.1016/j.jaci.2010.09.015
- Totté JEE, van der Feltz WT, Hennekam M, van Belkum A, van Zuuren EJ, Pasmans SGMA. Prevalence and odds of Staphylococcus aureus carriage in atopic dermatitis: a systematic review and meta-analysis. The British Journal of Dermatology. 2016;175(4):687–695. doi: 10.1111/bjd.14566
- Kong HH, Oh J, Deming C, Conlan S, Grice EA, Beatson MA. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Research. 2012;22(5):850–859. doi: 10.1101/gr.131029.111
- Lehtimäki J, Thorsen J, Rasmussen MA, Hjelmsø M, Shah S, Mortensen MS. Urbanized microbiota in infants, immune constitution, and later risk of atopic diseases. The Journal of Allergy and Clinical Immunology. 2021;148(1):234–243. doi: 10.1016/j.jaci.2020.12.621
- Glatz M, Bosshard PP, Hoetzenecker W, Schmid-Grendelmeier P. The Role of Malassezia spp. in Atopic Dermatitis. Journal of Clinical Medicine. 2015;4(6):1217–1228. doi: 10.3390/jcm4061217
- Bieber T. Disease modification in inflammatory skin disorders: opportunities and challenges. Nature Reviews. Drug Discovery. 2023;22(8):662–680. doi: 10.1038/s41573-023-00735-0
- Blauvelt A, Bruin-Weller M de, Gooderham M, Cather JC, Weisman J, Pariser D. Long-term management of moderate-to-severe atopic dermatitis with dupilumab and concomitant topical corticosteroids (LIBERTY AD CHRONOS): a 1‑year, randomised, double-blinded, placebo-controlled, phase 3 trial. The Lancet. 2017;389(10086):2287–2303. doi: 10.1016/S0140-6736 (17) 31191-1
- Simpson EL, Bieber T, Guttman-Yassky E, Beck LA, Blauvelt A, Cork MJ, Silverberg JI, Deleuran M, Kataoka Y, Lacour JP, Kingo K, Worm M, Poulin Y, Wollenberg A, Soo Y, Graham NM, Pirozzi G, Akinlade B, Staudinger H, Mastey V, Eckert L, Gadkari A, Stahl N, Yancopoulos GD, Ardeleanu M; SOLO 1 and SOLO 2 Investigators. Two Phase 3 Trials of Dupilumab versus Placebo in Atopic Dermatitis. N Engl J Med. 2016;375(24):2335–2348. doi: 10.1056/NEJMoa1610020
- Bruin-Weller M de, Thaçi D, Smith CH, Reich K, Cork MJ, Radin A. Dupilumab with concomitant topical corticosteroid treatment in adults with atopic dermatitis with an inadequate response or intolerance to ciclosporin A or when this treatment is medically inadvisable: a placebo-controlled, randomized phase III clinical t. British Journal of Dermatology. 2018;178(5):1083–1101. doi: 10.1111/bjd.16156
- Thaçi D, Simpson EL, Deleuran M, Kataoka Y, Chen Z, Gadkari A. Efficacy and safety of dupilumab monotherapy in adults with moderate-to-severe atopic dermatitis: a pooled analysis of two phase 3 randomized trials (LIBERTY AD SOLO 1 and LIBERTY AD SOLO 2). Journal of Dermatological Science. 2019;94(2):266–275. doi: 10.1016/j.jdermsci.2019.02.002
- Wang FP, Tang XJ, Wei CQ, Xu LR, Mao H, Luo FM. Dupilumab treatment in moderate-to-severe atopic dermatitis: A systematic review and meta-analysis. Journal of Dermatological Science. 2018;90(2):190–198. doi: 10.1016/j.jdermsci.2018.01.016
- Busse WW, Maspero JF, Rabe KF, Papi A, Wenzel SE, Ford LB. Liberty Asthma QUEST: Phase 3 Randomized, Double-Blind, Placebo-Controlled, Parallel-Group Study to Evaluate Dupilumab Efficacy/Safety in Patients with Uncontrolled, Moderate-to-Severe Asthma. Advances in Therapy. 2018;35(5):737–748. doi: 10.1007/s12325-018-0702-4
- Rial MJ, Barroso B, Sastre J. Dupilumab for treatment of food allergy. The Journal of Allergy and Clinical Immunology. In Practice. 2019;7(2):673–674. doi: 10.1016/j.jaip.2018.07.027
- Panettieri RA, Sjöbring U, Péterffy A, Wessman P, Bowen K, Piper E. Tralokinumab for severe, uncontrolled asthma (STRATOS 1 and STRATOS 2): two randomised, double-blind, placebo-controlled, phase 3 clinical trials. The Lancet. Respiratory Medicine. 2018;6(7):511–525. doi: 10.1016/S2213-2600(18)30184-X
- Wollenberg A, Howell MD, Guttman-Yassky E, Silverberg JI, Kell C, Ranade K. Treatment of atopic dermatitis with tralokinumab, an anti-IL‑13 mAb. The Journal of Allergy and Clinical Immunology. 2019;143(1):135–141. doi: 10.1016/j.jaci.2018.05.029
- Blauvelt A, Guttman-Yassky E, Lynde C, Khattri S, Schlessinger J, Imafuku S. Cendakimab in Patients With Moderate to Severe Atopic Dermatitis: A Randomized Clinical Trial. JAMA dermatology. 2024;160(8):856–864. doi: 10.1001/jamadermatol.2024.2131.
- Hirano I, Collins MH, Assouline-Dayan Y, Evans L, Gupta S, Schoepfer AM. RPC4046, a Monoclonal Antibody Against IL13, Reduces Histologic and Endoscopic Activity in Patients With Eosinophilic Esophagitis. Gastroenterology. 2019;156(3):592–603.e10. doi: 10.1053/j.gastro.2018.10.051
- Bernardo D, Bieber T, Torres T. Lebrikizumab for the Treatment of Moderate-to-Severe Atopic Dermatitis. American Journal of Clinical Dermatology. 2023;24(5):753–764. doi: 10.1007/s40257–023–00793–5
- Blauvelt A, Thyssen JP, Guttman-Yassky E, Bieber T, Serra-Baldrich E, Simpson E. Efficacy and safety of lebrikizumab in moderate-to-severe atopic dermatitis: 52‑week results of two randomized double-blinded placebo-controlled phase III trials. The British Journal of Dermatology. 2023;188(6):740–748. doi: 10.1093/bjd/ljad022
- Silverberg JI, Guttman-Yassky E, Thaçi D, Irvine AD, Stein Gold L, Blauvelt A. Two Phase 3 Trials of Lebrikizumab for Moderate-to-Severe Atopic Dermatitis. The New England Journal of Medicine. 2023;388(12):1080–1091. doi: 10.1056/NEJMoa2206714
- Kabashima K, Matsumura T, Komazaki H, Kawashima M, Nemolizumab-JP01 Study Group. Trial of Nemolizumab and Topical Agents for Atopic Dermatitis with Pruritus. The New England Journal of Medicine. 2020;383(2):141–150. doi: 10.1056/NEJMoa1917006
- Silverberg JI, Pinter A, Pulka G, Poulin Y, Bouaziz JD, Wollenberg A. Phase 2B randomized study of nemolizumab in adults with moderate-to-severe atopic dermatitis and severe pruritus. The Journal of Allergy and Clinical Immunology. 2020;145(1):173–182. doi: 10.1016/j.jaci.2019.08.013
- Kabashima K, Matsumura T, Komazaki H, Kawashima M; Nemolizumab-JP01 Study Group. Trial of Nemolizumab and Topical Agents for Atopic Dermatitis with Pruritus. N Engl J Med. 2020;383(2):141–150. doi: 10.1056/NEJMoa1917006
- Kang EG, Narayana PK, Pouliquen IJ, Lopez MC, Ferreira-Cornwell MC, Getsy JA. Efficacy and safety of mepolizumab administered subcutaneously for moderate to severe atopic dermatitis. Allergy. 2020;75(4):950–953. doi: 10.1111/all.14050
- Roufosse F, Kahn JE, Rothenberg ME, Wardlaw AJ, Klion AD, Kirby SY. Efficacy and safety of mepolizumab in hypereosinophilic syndrome: A phase III, randomized, placebo-controlled trial. The Journal of Allergy and Clinical Immunology. 2020;146(6):1397–1405. doi: 10.1016/j.jaci.2020.08.037
- Wechsler ME, Akuthota P, Jayne D, Khoury P, Klion A, Langford CA. Mepolizumab or Placebo for Eosinophilic Granulomatosis with Polyangiitis. The New England Journal of Medicine. 2017;376(20):1921–1932. doi: 10.1056/NEJMoa1702079
- Chupp GL, Bradford ES, Albers FC, Bratton DJ, Wang-Jairaj J, Nelsen LM, Trevor JL, Magnan A, Ten Brinke A. Efficacy of mepolizumab add-on therapy on health-related quality of life and markers of asthma control in severe eosinophilic asthma (MUSCA): a randomised, double-blind, placebo-controlled, parallel-group, multicentre, phase 3b trial. Lancet Respir Med. 2017;5(5):390–400. doi: 10.1016/S2213-2600(17)30125-X
- Corren J, Weinstein S, Janka L, Zangrilli J, Garin M. Phase 3 Study of Reslizumab in Patients With Poorly Controlled Asthma: Effects Across a Broad Range of Eosinophil Counts. Chest. 2016;150(4):799–810. doi: 10.1016/j.chest.2016.03.018
- Manka LA, Guntur VP, Denson JL, Dunn RM, Dollin YT, Strand MJ. Efficacy and safety of reslizumab in the treatment of eosinophilic granulomatosis with polyangiitis. Annals of Allergy, Asthma & Immunology: Official Publication of the American College of Allergy, Asthma, & Immunology. 2021;126(6):696–701.e1. doi: 10.1016/j.anai.2021.01.035
- Weinstein SF, Katial RK, Bardin P, Korn S, McDonald M, Garin M. Effects of Reslizumab on Asthma Outcomes in a Subgroup of Eosinophilic Asthma Patients with Self-Reported Chronic Rhinosinusitis with Nasal Polyps. The Journal of Allergy and Clinical Immunology. In Practice. 2019;7(2):589–596.e3. doi: 10.1016/j.jaip.2018.08.021
- Jackson DJ, Wechsler ME, Jackson DJ, Bernstein D, Korn S, Pfeffer PE, Chen R, Saito J, de Luíz Martinez G, Dymek L, Jacques L, Bird N, Schalkwijk S, Smith D, Howarth P, Pavord ID; SWIFT‑1 and SWIFT‑2 Investigators; SWIFT‑1 Investigators; SWIFT‑2 Investigators. Twice-Yearly Depemokimab in Severe Asthma with an Eosinophilic Phenotype. N Engl J Med. 2024;391(24):2337–2349. doi: 10.1056/NEJMoa2406673
- Bachert C, Han JK, Desrosiers MY, Gevaert P, Heffler E, Hopkins C. Efficacy and safety of benralizumab in chronic rhinosinusitis with nasal polyps: A randomized, placebo-controlled trial. The Journal of Allergy and Clinical Immunology. 2022;149(4):1309–1317.e12. doi: 10.1016/j.jaci.2021.08.030
- Bleecker ER, FitzGerald JM, Chanez P, Papi A, Weinstein SF, Barker P. Efficacy and safety of benralizumab for patients with severe asthma uncontrolled with high-dosage inhaled corticosteroids and long-acting β2‑agonists (SIROCCO): a randomised, multicentre, placebo-controlled phase 3 trial. Lancet (London, England). 2016;388(10056):2115–2127. doi: 10.1016/S0140–6736 (16) 31324–1
- Cottu A, Groh M, Desaintjean C, Marchand-Adam S, Guillevin L, Puechal X. Benralizumab for eosinophilic granulomatosis with polyangiitis. Annals of the Rheumatic Diseases. 2023;82(12): 1580–1586. doi: 10.1136/ard‑2023-224624.
- Criner GJ, Celli BR, Brightling CE, Agusti A, Papi A, Singh D. Benralizumab for the Prevention of COPD Exacerbations. The New England Journal of Medicine. 2019;381(11): 1023–1034. doi: 10.1056/NEJMoa1905248
- Guttman-Yassky E, Bahadori L, Brooks L, Clark KL, Grindebacke H, Ho CN. Treating moderate-to-severe atopic dermatitis with benralizumab: results from the HILLIER study, a plain language summary. Immunotherapy. 2024;16(10):641–648. doi: 10.2217/imt‑2023-0319
- Amgen. A Dose-Ranging, Double-Blind, Placebo-Controlled Study to Evaluate the Safety and Efficacy of Tezepelumab Alone or Combined With Topical Corticosteroids in Moderate-to-Severe Atopic Dermatitis. Report number: NCT03809663, 2022 Mar [Accessed 8th December 2024]. https://clinicaltrials.gov/study/NCT03809663 [Accessed 8th December 2024].
- Corren J, Menzies-Gow A, Chupp G, Israel E, Korn S, Cook B. Efficacy of Tezepelumab in Severe, Uncontrolled Asthma: Pooled Analysis of the PATHWAY and NAVIGATOR Clinical Trials. American Journal of Respiratory and Critical Care Medicine. 2023;208(1):13–24. doi: 10.1164/rccm.202210–2005OC
- Menzies-Gow A, Corren J, Bourdin A, Chupp G, Israel E, Wechsler ME.Tezepelumab in Adults and Adolescents with Severe, Uncontrolled Asthma. The New England Journal of Medicine. 2021;384(19):1800–1809. doi: 10.1056/NEJMoa2034975
- Kelsen SG, Agache IO, Soong W, Israel E, Chupp GL, Cheung DS. Astegolimab (anti-ST2) efficacy and safety in adults with severe asthma: A randomized clinical trial. The Journal of Allergy and Clinical Immunology. 2021;148(3):790–798. doi: 10.1016/j.jaci.2021.03.044.
- Waters M, McKinnell JA, Kalil AC, Martin GS, Buchman TG, Theess W. Astegolimab or Efmarodocokin Alfa in Patients With Severe COVID‑19 Pneumonia: A Randomized, Phase 2 Trial. Critical Care Medicine. 2023;51(1):103–116. doi: 10.1097/CCM.0000000000005716
- Wechsler ME, Ruddy MK, Pavord ID, Israel E, Rabe KF, Ford LB, Maspero JF, Abdulai RM, Hu CC, Martincova R, Jessel A, Nivens MC, Amin N, Weinreich DM, Yancopoulos GD, Goulaouic H. Efficacy and Safety of Itepekimab in Patients with Moderate-to-Severe Asthma. N Engl J Med. 2021;385(18):1656–1668. doi: 10.1056/NEJMoa2024257
- England E, Rees DG, Scott IC, Carmen S, Chan DTY, Chaillan Huntington CE. Tozorakimab (MEDI3506): an anti-IL‑33 antibody that inhibits IL‑33 signalling via ST2 and RAGE/EGFR to reduce inflammation and epithelial dysfunction. Scientific Reports. 2023;13(1):9825. doi: 10.1038/s41598–023–36642‑y
- Cao P, Xu W, Zhang L. Rituximab, Omalizumab, and Dupilumab Treatment Outcomes in Bullous Pemphigoid: A Systematic Review. Frontiers in Immunology. 2022;13:928621. doi: 10.3389/fimmu.2022.928621
- Chan SMH, Cro S, Cornelius V, Jahan R, Radulovic S, Lack G. Omalizumab for severe atopic dermatitis in 4- to 19‑year-olds: the ADAPT RCT. Southampton (UK): National Institute for Health and Care Research; 2022 May. [Accessed 8th December 2024].
- Gevaert P, Omachi TA, Corren J, Mullol J, Han J, Lee SE. Efficacy and safety of omalizumab in nasal polyposis: 2 randomized phase 3 trials. The Journal of Allergy and Clinical Immunology. 2020;146(3):595–605. doi: 10.1016/j.jaci.2020.05.032.
- Holm JG, Agner T, Sand C, Thomsen SF. Omalizumab for atopic dermatitis: case series and a systematic review of the literature. International Journal of Dermatology. 2017;56(1):18–26. doi: 10.1111/ijd.13353
- Tharp MD, Bernstein JA, Kavati A, Ortiz B, MacDonald K, Denhaerynck K. Benefits and Harms of Omalizumab Treatment in Adolescent and Adult Patients With Chronic Idiopathic (Spontaneous) Urticaria: A Meta-analysis of ‘Real-world’ Evidence. JAMA dermatology. 2019;155(1):29–38. doi: 10.1001/jamadermatol.2018.3447
- Omalizumab in IgE-Mediated Food Allergy: A Systematic Review and Meta-Analysis — PubMed. https://pubmed.ncbi.nlm.nih.gov/36529441/ [Accessed 8th December 2024].
- Wedi B. Ligelizumab for the treatment of chronic spontaneous urticaria. Expert Opinion on Biological Therapy. 2020;20(8):853–861. doi: 10.1080/14712598.2020.1767061.
- Wood RA, Chinthrajah RS, Eggel A, Bottoli I, Gautier A, Woisetschlaeger M. The rationale for development of ligelizumab in food allergy. The World Allergy Organization Journal. 2022;15(9):100690. doi: 10.1016/j.waojou.2022.100690
- Guttman-Yassky E, Brunner PM, Neumann AU, Khattri S, Pavel AB, Malik K. Efficacy and safety of fezakinumab (an IL‑22 monoclonal antibody) in adults with moderate-to-severe atopic dermatitis inadequately controlled by conventional treatments: A randomized, double-blind, phase 2a trial. Journal of the American Academy of Dermatology. 2018;78(5):872–881.e6. doi: 10.1016/j.jaad.2018.01.016
- Bangert C, Loesche C, Skvara H, Fölster-Holst R, Lacour JP, Jones J. IgE Depletion with Ligelizumab Does Not Significantly Improve Clinical Symptoms in Patients with Moderate-to-Severe Atopic Dermatitis. The Journal of Investigative Dermatology. 2023;143(10):1896–1905.e8. doi: 10.1016/j.jid.2023.01.040
- Jacobi A, Antoni C, Manger B, Schuler G, Hertl M. Infliximab in the treatment of moderate to severe atopic dermatitis. Journal of the American Academy of Dermatology. 2005;52(3 Pt 1):522–526. doi: 10.1016/j.jaad.2004.11.022
- Ungar B, Pavel AB, Li R, Kimmel G, Nia J, Hashim P. Phase 2 randomized, double-blind study of IL‑17 targeting with secukinumab in atopic dermatitis. The Journal of Allergy and Clinical Immunology. 2021;147(1):394–397. doi: 10.1016/j.jaci.2020.04.055
- Husein-ElAhmed H, Steinhoff M. Effectiveness of ustekinumab in patients with atopic dermatitis: analysis of real-world evidence. The Journal of Dermatological Treatment. 2022;33(4):1838–1843. doi: 10.1080/09546634.2021.1914315
- Levy LL, Urban J, King BA. Treatment of recalcitrant atopic dermatitis with the oral Janus kinase inhibitor tofacitinib citrate. Journal of the American Academy of Dermatology. 2015;73(3):395–399. doi: 10.1016/j.jaad.2015.06.045
- Bissonnette R, Papp KA, Poulin Y, Gooderham M, Raman M, Mallbris L. Topical tofacitinib for atopic dermatitis: a phase IIa randomized trial. The British Journal of Dermatology. 2016;175(5):902–911. doi: 10.1111/bjd.14871
- Tanimoto A, Shinozaki Y, Yamamoto Y, Katsuda Y, Taniai-Riya E, Toyoda K. A novel JAK inhibitor JTE‑052 reduces skin inflammation and ameliorates chronic dermatitis in rodent models: Comparison with conventional therapeutic agents. Experimental Dermatology. 2018;27(1):22–29. doi: 10.1111/exd.13370
- Nakagawa H, Nemoto O, Igarashi A, Saeki H, Murata R, Kaino H. Long-term safety and efficacy of delgocitinib ointment, a topical Janus kinase inhibitor, in adult patients with atopic dermatitis. The Journal of Dermatology. 2020;47(2):114–120. doi: 10.1111/1346–8138.15173
- Nakagawa H, Nemoto O, Igarashi A, Saeki H, Kaino H, Nagata T. Delgocitinib ointment, a topical Janus kinase inhibitor, in adult patients with moderate to severe atopic dermatitis: A phase 3, randomized, double-blind, vehicle-controlled study and an open-label, long-term extension study. Journal of the American Academy of Dermatology. 2020;82(4):823–831. doi: 10.1016/j.jaad.2019.12.015
- Nakagawa H, Igarashi A, Saeki H, Kabashima K, Tamaki T, Kaino H. Safety, efficacy, and pharmacokinetics of delgocitinib ointment in infants with atopic dermatitis: A phase 3, open-label, and long-term study. Allergology International: Official Journal of the Japanese Society of Allergology. 2024;73(1):137–142. doi: 10.1016/j.alit.2023.04.003
- Papp K, Szepietowski JC, Kircik L, Toth D, Eichenfield LF, Leung DYM. Efficacy and safety of ruxolitinib cream for the treatment of atopic dermatitis: Results from 2 phase 3, randomized, double-blind studies. Journal of the American Academy of Dermatology. 2021;85(4):863–872. doi: 10.1016/j.jaad.2021.04.085
- Reich K, Kabashima K, Peris K, Silverberg JI, Eichenfield LF, Bieber T. Efficacy and Safety of Baricitinib Combined With Topical Corticosteroids for Treatment of Moderate to Severe Atopic Dermatitis: A Randomized Clinical Trial. JAMA dermatology. 2020;156(12):1333–1343. doi: 10.1001/jamadermatol.2020.3260
- Silverberg JI, Simpson EL, Wollenberg A, Bissonnette R, Kabashima K, DeLozier AM. Long-term Efficacy of Baricitinib in Adults With Moderate to Severe Atopic Dermatitis Who Were Treatment Responders or Partial Responders: An Extension Study of 2 Randomized Clinical Trials. JAMA dermatology. 2021;157(6):691–699. doi: 10.1001/jamadermatol.2021.1273
- Blauvelt A, Ladizinski B, Prajapati VH, Laquer V, Fischer A, Eisman S. Efficacy and safety of switching from dupilumab to upadacitinib versus continuous upadacitinib in moderate-to-severe atopic dermatitis: Results from an open-label extension of the phase 3, randomized, controlled trial (Heads Up). Journal of the American Academy of Dermatology. 2023;89(3):478–485. doi: 10.1016/j.jaad.2023.05.033
- Guttman-Yassky E, Thaçi D, Pangan AL, Hong HCH, Papp KA, Reich K. Upadacitinib in adults with moderate to severe atopic dermatitis: 16‑week results from a randomized, placebo-controlled trial. The Journal of Allergy and Clinical Immunology. 2020;145(3):877–884. doi: 10.1016/j.jaci.2019.11.025
- Simpson EL, Papp KA, Blauvelt A, Chu CY, Hong HCH, Katoh N. Efficacy and Safety of Upadacitinib in Patients With Moderate to Severe Atopic Dermatitis: Analysis of Follow-up Data From the Measure Up 1 and Measure Up 2 Randomized Clinical Trials. JAMA dermatology. 2022;158(4):404–413. doi: 10.1001/jamadermatol.2022.0029
- Guttman-Yassky E, Teixeira HD, Simpson EL, Papp KA, Pangan AL, Blauvelt A, Thaçi D, Chu CY, Hong HC, Katoh N, Paller AS, Calimlim B, Gu Y, Hu X, Liu M, Yang Y, Liu J, Tenorio AR, Chu AD, Irvine AD. Once-daily upadacitinib versus placebo in adolescents and adults with moderate-to-severe atopic dermatitis (Measure Up 1 and Measure Up 2): results from two replicate double-blind, randomised controlled phase 3 trials. Lancet. 2021;397(10290):2151–2168. doi: 10.1016/S0140–6736 (21) 00588–2
- Gooderham MJ, Forman SB, Bissonnette R, Beebe JS, Zhang W, Banfield C. Efficacy and Safety of Oral Janus Kinase 1 Inhibitor Abrocitinib for Patients With Atopic Dermatitis: A Phase 2 Randomized Clinical Trial. JAMA dermatology. 2019;155(12):1371–1379. doi: 10.1001/jamadermatol.2019.2855
- Silverberg JI, Simpson EL, Thyssen JP, Gooderham M, Chan G, Feeney C. Efficacy and Safety of Abrocitinib in Patients With Moderate-to-Severe Atopic Dermatitis: A Randomized Clinical Trial. JAMA dermatology. 2020;156(8):863–873. doi: 10.1001/jamadermatol.2020.1406
- Wan H, Jia H, Xia T, Zhang D. Comparative efficacy and safety of abrocitinib, baricitinib, and upadacitinib for moderate-to-severe atopic dermatitis: A network meta-analysis. Dermatologic Therapy. 2022;35(9): e15636. doi: 10.1111/dth.15636
Қосымша файлдар

