Tumor models in the investigation of oral cancer pathogenesis and treatment development

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

Relevance. Oral cancer is one of the most common cancers among neoplasms of the head and neck. Oral cancer is characterized by a poor prognosis, a lack of specific biomarkers and highly effective targeted treatment. Experimental model systems are needed to study oral cancer pathogenesis and develop new treatments. Understanding the molecular features of oral cancer represents one of the key steps in developing new therapeutic strategies. A wide range of biological models is currently available, but their versatility is limited. Experimental models for studying oral cancer have evolved from cell cultures to in vivo systems that mimic pathological processes and the tumor-stroma interactions. Here, we summarized the available information on the current state of experimental oral cancer systems. In vitro models include immortalized and primary cell lines, spheroids and organoids, whereas in vivo models are represented by syngeneic and xenogeneic models, immunocompromised, immunocompetent, humanized, and genetically engineered animals. In vitro models are effective in studying the biology of oral tumors and evaluating the effectiveness of therapy due to high reproducibility and speed of obtaining results. Existing cell lines are widely used for fundamental and translational research and serve as a crucial component in preclinical trials. In vivo models are used in phase II of preclinical research in drug development and thus represent a transitional stage to clinical trials. Conclusion. Despite significant progress in the development of variousexperimental models, each of them has its own advantages and limitations. There is no universal model that allows for the complete extrapolation of the obtained results to the human body. Therefore, when planning research, it is crucial to select carefully the most suitable biological models based on the objectives at hand.

Негізгі сөздер

Авторлар туралы

Maria Tretyakova

Tomsk National Research Medical Center of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: trremar@mail.ru
ORCID iD: 0000-0002-5040-931X
SPIN-код: 5207-8330
Tomsk, Russian Federation

Elizaveta Prostakishina

Tomsk National Research Medical Center of the Russian Academy of Sciences

Email: trremar@mail.ru
ORCID iD: 0000-0002-1405-3723
SPIN-код: 4517-4433
Tomsk, Russian Federation

Elena Kolegova

Tomsk National Research Medical Center of the Russian Academy of Sciences

Email: trremar@mail.ru
ORCID iD: 0000-0001-9122-3274
SPIN-код: 5865-1264
Tomsk, Russian Federation

Evgeny Choinzonov

Tomsk National Research Medical Center of the Russian Academy of Sciences

Email: trremar@mail.ru
ORCID iD: 0000-0002-3651-0665
SPIN-код: 2240-8730
Tomsk, Russian Federation

Evgeny Denisov

Tomsk National Research Medical Center of the Russian Academy of Sciences

Email: trremar@mail.ru
ORCID iD: 0000-0003-2923-9755
SPIN-код: 9498-5797
Tomsk, Russian Federation

Әдебиет тізімі

  1. Li Q, Dong H, Yang G, Song Y, Mou Y, Ni Y. Mouse Tumor-Bearing Models as Preclinical Study Platforms for Oral Squamous Cell Carcinoma. Front Oncol. 2020;10:212. doi: 10.3389/fonc.2020.00212
  2. Miranda-Filho A, Bray F. Global patterns and trends in cancers of the lip, tongue and mouth. Oral Oncol. 2020;102:104551. doi: 10.1016/j.oraloncology.2019.104551
  3. Kolegova ES, Patysheva MR, Larionova IV, Fedorova IK, Kulbakin DE, Choinzonov EL, Denisov EV. Early-onset oral cancer as a clinical entity: aetiology and pathogenesis. Int J Oral Maxillofac Surg. 2022;51(12):1497–1509. doi: 10.1016/j.ijom.2022.04.005
  4. Patysheva MR, Kolegova ES, Khozyainova AA, Prostakishina EA, Korobeynikov VY, Menyailo ME, et al. The Consortium E. Pathogenesis of Oral Cancer in Young A. Revealing molecular mechanisms of early-onset tongue cancer by spatial transcriptomics. Sci Rep. 2024;14(1):26255. doi: 10.1038/s41598–024–76044–2
  5. Luo JJ, Young CD, Zhou HM, Wang XJ. Mouse Models for Studying Oral Cancer: Impact in the Era of Cancer Immunotherapy. J Dent Res. 2018;97(6):683–690. doi: 10.1177/0022034518767635
  6. Shaikh MH, Dawson A, Prokopec SD, Barrett JW, Y.F. Zeng P, Khan MI, et al. Loss of LRP1B expression drives acquired chemo and radio-resistance in HPV-positive head and neck cancer. Oral Oncol. 2023;146:106580. doi: 10.1016/j.oraloncology.2023.106580
  7. Lakshmi T, Ezhilarasan D, Nagaich U, Vijayaragavan R. Acacia catechu Ethanolic Seed Extract Triggers Apoptosis of SCC‑25 Cells. Pharmacogn Mag. 2017;13(Suppl 3):405–411. doi: 10.4103/pm.pm_458_16
  8. Eloraby DAI, El-Gayar SF, El-Bolok AH, Ammar SG, El Shafei MM. In Vitro Assessment of the Cytotoxic Effect of 5-Fluorouracil, Thymoquinone and their Combination on Tongue Squamous Cell Carcinoma Cell Line. Asian Pac J Cancer Prev. 2024;25(6):2169–2176. doi: 10.31557/apjcp.2024.25.6.2169
  9. El-Hamid ESA, Gamal-Eldeen AM, Sharaf Eldeen AM. Liposome-coated nano doxorubicin induces apoptosis on oral squamous cell carcinoma CAL‑27 cells. Archives of Oral Biology. 2019;103:47–54. doi: 10.1016/j.archoralbio.2019.05.011
  10. Mentzel J, Hildebrand LS, Kuhlmann L, Fietkau R, Distel LV. Effective Radiosensitization of HNSCC Cell Lines by DNA-PKcs Inhibitor AZD7648 and PARP Inhibitors Talazoparib and Niraparib. Int J Mol Sci. 2024;25(11):5629. doi: 10.3390/ijms25115629
  11. Dziedzic A, Kubina R, Kabała-Dzik A, Tanasiewicz M. Induction of Cell Cycle Arrest and Apoptotic Response of Head and Neck Squamous Carcinoma Cells (Detroit 562) by Caffeic Acid and Caffeic Acid Phenethyl Ester Derivative. Evidence-Based Complementary and Alternative Medicine. 2017;2017(1):6793456. doi: 10.1155/2017/6793456
  12. de Llobet LI, Baro M, Mesia R, Balart J. Simvastatin Enhances the Effects of Radiotherapy and Cetuximab on a Cell Line (FaDu) Derived from a Squamous Cell Carcinoma of Head and Neck. Transl Oncol. 2014;7(4):513–522. doi: 10.1016/j.tranon.2014.02.008
  13. Dwivedi N, Gangadharan C, Pillai V, Kuriakose MA, Suresh A, Das M. Establishment and characterization of novel autologous pair cell lines from two Indian non-habitual tongue carcinoma patients. Oncol Rep. 2022;48(3). doi: 0.3892/or.2022.8362
  14. Ganjibakhsh M, Aminishakib P, Farzaneh P, Karimi A, Fazeli SAS, Rajabi M, et al. Establishment and Characterization of Primary Cultures from Iranian Oral Squamous Cell Carcinoma Patients by Enzymatic Method and Explant Culture. J Dent (Tehran). 2017;14(4):191–202. doi: 10.55463/issn.1674–2974.49.9.2
  15. Goldie SJ, Mulder KW, Tan DW, Lyons SK, Sims AH, Watt FM. FRMD4A upregulation in human squamous cell carcinoma promotes tumor growth and metastasis and is associated with poor prognosis. Cancer Res. 2012;72(13):3424–3436. doi: 10.1158/0008–5472.can‑12–0423
  16. Chaves P, Garrido M, Oliver J, Pérez-Ruiz E, Barragan I, Rueda-Domínguez A. Preclinical models in head and neck squamous cell carcinoma. Br J Cancer. 2023;128(10):1819–1827. doi: 10.1038/s41416–023–02186–1
  17. Ono K, Sato K, Nakamura T, Yoshida Y, Murata S, Yoshida K, et al. Reproduction of the Antitumor Effect of Cisplatin and Cetuximab Using a Three-dimensional Spheroid Model in Oral Cancer. Int J Med Sci. 2022;19(8):1320–1333. doi: 10.7150/ijms.74109
  18. Iannelli F, Zotti AI, Roca MS, Grumetti L, Lombardi R, Moccia T, et al. Valproic Acid Synergizes With Cisplatin and Cetuximab in vitro and in vivo in Head and Neck Cancer by Targeting the Mechanisms of Resistance. Front Cell Dev Biol. 2020;8:732. doi: 10.3389/fcell.2020.00732
  19. Al-Samadi A, Poor B, Tuomainen K, Liu V, Hyytiäinen A, Suleymanova I, Mesimaki K, Wilkman T, Mäkitie A, Saavalainen P, Salo T. In vitro humanized 3D microfluidic chip for testing personalized immunotherapeutics for head and neck cancer patients. Exp Cell Res. 2019;383(2):111508. doi: 10.1016/j.yexcr.2019.111508
  20. Driehuis E, Kolders S, Spelier S, Lõhmussaar K, Willems SM, Devriese LA, et al. Oral Mucosal Organoids as a Potential Platform for Personalized Cancer Therapy. Cancer Discov. 2019;9(7):852–871. doi: 10.1158/2159–8290.cd‑18–1522
  21. Khayatan D, Hussain A, Tebyaniyan H. Exploring animal models in oral cancer research and clinical intervention: A critical review. Vet Med Sci. 2023;9(4):1833–1847. doi: 10.1002/vms3.1161
  22. Luo JJ, Young CD, Zhou HM, Wang XJ. Mouse Models for Studying Oral Cancer: Impact in the Era of Cancer Immunotherapy. J Dent Res. 2018;97(6):683–690. doi: 10.1177/0022034518767635
  23. Foy JP, Tortereau A, Caulin C, Le Texier V, Lavergne E, Thomas E, et al. The dynamics of gene expression changes in a mouse model of oral tumorigenesis may help refine prevention and treatment strategies in patients with oral cancer. Oncotarget. 2016;7(24):35932–35945. doi: 10.18632/oncotarget.8321
  24. Demétrio de Souza França P, Guru N, Roberts S, Kossatz S, Mason C, et al. Fluorescence-guided resection of tumors in mouse models of oral cancer. Sci Rep. 2020;10(1):11175. doi: 10.1038/s41598–020–67958–8
  25. Chen YF, Chang KW, Yang IT, Tu HF, Lin SC. Establishment of syngeneic murine model for oral cancer therapy. Oral Oncol. 2019;95:194–201. doi: 10.1016/j.oraloncology.2019.06.026
  26. Ishida K, Tomita H, Nakashima T, Hirata A, Tanaka T, Shibata T, Hara A. Current mouse models of oral squamous cell carcinoma: Genetic and chemically induced models. Oral Oncol. 2017;73:16–20. doi: 10.1016/j.oraloncology.2017.07.028
  27. Dong H, Su H, Chen L, Liu K, Hu H-m, Yang W, Mou Y. Immunocompetence and mechanism of the DRibble-DCs vaccine for oral squamous cell carcinoma. Cancer Management and Research. 2018;10:493–501. doi: 10.2147/CMAR.S155914
  28. Nagaya T, Nakamura Y, Okuyama S, Ogata F, Maruoka Y, Choyke PL, Allen C, Kobayashi H. Syngeneic Mouse Models of Oral Cancer Are Effectively Targeted by Anti–CD44-Based NIR-PIT. Molecular Cancer Research. 2017;15(12):1667. doi: 10.1158/1541–7786.mcr‑17–0333
  29. Chung MK, Jung YH, Lee JK, Cho SY, Murillo-Sauca O, Uppaluri R, Shin JH, Sunwoo JB. CD271 Confers an Invasive and Metastatic Phenotype of Head and Neck Squamous Cell Carcinoma through the Upregulation of Slug. Clinical Cancer Research. 2018;24(3):674–683. doi: 10.1158/1078–0432.CCR‑17–0866
  30. Judd NP, Allen CT, Winkler AE, Uppaluri R. Comparative analysis of tumor-infiltrating lymphocytes in a syngeneic mouse model of oral cancer. Otolaryngol Head Neck Surg. 2012;147(3):493–500. doi: 10.1177/0194599812442037
  31. Oweida A, Lennon S, Calame D, Korpela S, Bhatia S, Sharma J, et al. Ionizing radiation sensitizes tumors to PD-L1 immune checkpoint blockade in orthotopic murine head and neck squamous cell carcinoma. Oncoimmunology. 2017;6(10): e1356153. doi: 10.1080/2162402x.2017.1356153
  32. Kerk SA, Finkel KA, Pearson AT, Warner KA, Zhang Z, Nör F, et al. 5T4-Targeted Therapy Ablates Cancer Stem Cells and Prevents Recurrence of Head and Neck Squamous Cell Carcinoma. Clinical Cancer Research. 2017;23(10):2516–2527. doi: 10.1158/1078–0432.ccr‑16–1834
  33. Fang Z, Zhao J, Xie W, Sun Q, Wang H, Qiao B. LncRNA UCA1 promotes proliferation and cisplatin resistance of oral squamous cell carcinoma by sunppressing miR‑184 expression. Cancer Med. 2017;6(12):2897–2908. doi: 10.1002/cam4.1253
  34. Feng X, Luo Q, Zhang H, Wang H, Chen W, Meng G, Chen F. The role of NLRP3 inflammasome in 5‑fluorouracil resistance of oral squamous cell carcinoma. Journal of Experimental & Clinical Cancer Research. 2017;36(1):81. doi: 10.1186/s13046–017–0553‑x
  35. Ozawa H, Ranaweera RS, Izumchenko E, Makarev E, Zhavoronkov A, Fertig EJ, et al. SMAD4 Loss Is Associated with Cetuximab Resistance and Induction of MAPK/JNK Activation in Head and Neck Cancer Cells. Clinical Cancer Research. 2017;23(17):5162–5175. doi: 10.1158/1078–0432.ccr‑16–1686
  36. Wang Y, Zhu Y, Wang Q, Hu H, Li Z, Wang D, Zhang W, Qi B, Ye J, Wu H, Jiang H, Liu L, Yang J, Cheng J. The histone demethylase LSD1 is a novel oncogene and therapeutic target in oral cancer. Cancer Lett. 2016;374(1):12–21. doi: 10.1016/j.canlet.2016.02.004
  37. Tretyakova MS, Bokova UA, Korobeynikova AA, Denisov EV. Experimental models of tumor growth in soft tissue sarcomas. RUDN Journal of Medicine. 2023;27(4):459–469. doi: 10.22363/2313-0245-2023-27-4-459-469. (In Russian).
  38. Masood R, Hochstim C, Cervenka B, Zu S, Baniwal SK, Patel V, Kobielak A, Sinha UK. A novel orthotopic mouse model of head and neck cancer and lymph node metastasis. Oncogenesis. 2013;2(9): e68. doi: 10.1038/oncsis.2013.33
  39. Tan MT, Wu JG, Callejas-Valera JL, Schwarz RA, Gillenwater AM, Richards-Kortum RR, Vigneswaran N. A PIK3CA transgenic mouse model with chemical carcinogen exposure mimics human oral tongue tumorigenesis. Int J Exp Pathol. 2020;101(1–2):45–54. doi: 10.1111/iep.12347
  40. Lin YH, Yang MC, Tseng SH, Jiang R, Yang A, Farmer E, et al. Integration of Oncogenes via Sleeping Beauty as a Mouse Model of HPV16(+) Oral Tumors and Immunologic Control. Cancer Immunol Res. 2018;6(3):305–319. doi: 10.1158/2326–6066.cir‑16–0358
  41. Kalish JM, Tang XH, Scognamiglio T, Zhang T, Gudas LJ. Doxycycline-induced exogenous Bmi‑1 expression enhances tumor formation in a murine model of oral squamous cell carcinoma. Cancer Biol Ther. 2020;21(5):400–411. doi: 10.1080/15384047.2020.1720485
  42. Lysenko V, McHugh D, Behrmann L, Rochat MA, Wilk CM, Kovtonyuk L, et al. Humanised mouse models for haematopoiesis and infectious diseases. Swiss Med Wkly. 2017;147: w14516. doi: 10.4414/smw.2017.14516
  43. Schifflers C, Zottnick S, Förster JD, Kruse S, Yang R, Wiethoff H, et al. Development of an Orthotopic HPV16-Dependent Base of Tongue Tumor Model in MHC-Humanized Mice. Pathogens. 2023;12(2):188. doi: 10.3390/pathogens12020188
  44. Yahya F, Mohd Bakri M, Hossain MZ, Syed Abdul Rahman SN, Mohammed Alabsi A, Ramanathan A. Combination Treatment of TRPV4 Agonist with Cisplatin Promotes Vessel Normalization in an Animal Model of Oral Squamous Cell Carcinoma. Medicina (Kaunas). 2022;58(9). doi: 10.3390/medicina58091229
  45. Cannon CM, Trembley JH, Kren BT, Unger GM, O’Sullivan MG, Cornax I, Modiano JF, Ahmed K. Therapeutic Targeting of Protein Kinase CK2 Gene Expression in Feline Oral Squamous Cell Carcinoma: A Naturally Occurring Large-Animal Model of Head and Neck Cancer. Hum Gene Ther Clin Dev. 2017;28(2):80–86. doi: 10.1089/humc.2017.008
  46. Goldberg M, Manzi A, Birdi A, Laporte B, Conway P, Cantin S, Mishra V, Singh A, Pearson AT, Goldberg ER, Goldberger S, Flaum B, Hasina R, London NR, Gallia GL, Bettegowda C, Young S, Sandulache V, Melville J, Shum J, O’Neill SE, Aydin E, Zhavoronkov A, Vidal A, Soto A, Alonso MJ, Rosenberg AJ, Lingen MW, D’Cruz A, Agrawal N, Izumchenko E. A nanoengineered topical transmucosal cisplatin delivery system induces anti-tumor response in animal models and patients with oral cancer. Nat Commun. 2022;13(1):4829. doi: 10.1038/s41467–022–31859–3
  47. Monti-Hughes A, Aromando RF, Pérez MA, Schwint A, EItoiz ME. The hamster cheek pouch model for field cancerization studies. Periodontology 2000. 2015;67(1):292–311. doi: 10.1111/prd.12066

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».