Modern osteoplastic materials
- Authors: Salekh K.M.1, Dymnikov A.B.1, Mukhametshin R.F.1, Ivashkevich S.G.1
-
Affiliations:
- RUDN University
- Issue: Vol 27, No 3 (2023): PHYSIOLOGY
- Pages: 368-378
- Section: Stomatology
- URL: https://journal-vniispk.ru/2313-0245/article/view/319708
- DOI: https://doi.org/10.22363/2313-0245-2023-27-3-368-378
- EDN: https://elibrary.ru/QAPUVW
- ID: 319708
Cite item
Full Text
Abstract
Relevance. Bone tissue regeneration and the development of methods for directed influence on the processes of bone healing are of the most urgent problems of modern medicine. Defects in the jaw bones are widespread, which in turn leads to the search for modern bone - replacing materials that meet the basic characteristics of the bone. Information was searched based on the PubMed and E-library databases, using the keywords: “bone tissue” AND “bone regeneration” AND “osteoplastic materials” AND “osteoinduction” AND “osteoconduction”. Autologous bone is considered the clinical gold standard and the most effective method of bone regeneration. It is the autograft that has three main characteristics: osteogenicity, osteoinductive and osteoconductive. The autograft has limitations due to the limited amount of bone tissue and the soreness of the donor site. A viable alternative to autologous bone is an allograft. The most widely used allograft is demineralized freeze - dried bone allograft (FDBA). The freeze - drying process promotes damage to osteoblasts, which limits its osteoinductive potential, but it is a profitable alternative in terms of convenience, abundance of choice and absence of pain due to the absence of additional surgical intervention. The main component of xenogeneic materials is collagen, which has the ability to resorb in tissues and stimulate regenerative processes. The material has osteoconductive properties and is capable of bone ingrowth, with the formation of a new bone directly from the xenomaterial bed with the deposition of bone cells on its surface. Subsequently, the xenomaterial undergoes resorption with complete replacement with new bone tissue. Alloplastic materials are fully synthetic materials synthesized from inorganic sources. Alloplastic materials have the property of osteoconduction, and when various growth factors are added to their composition, the property of osteoinduction is added to osteoconductive. The clinical use of bone substitutes is limited by their fragility as well as their unpredictable rate of resorption, which render these materials generally less favorable in clinical outcomes. Conclusion. Until now, a scientific search for various materials capable of replacing an autogenous transplant is being carried out. At the moment, none of the currently available materials has all the desired characteristics and the choice of materials directly depends on the specific clinical situation in the oral cavity.
About the authors
Karina M. Salekh
RUDN University
Author for correspondence.
Email: ms.s.karina@mail.ru
ORCID iD: 0000-0003-4415-766X
Moscow, Russian Federation
Alexandr B. Dymnikov
RUDN University
Email: ms.s.karina@mail.ru
ORCID iD: 0000-0001-8980-6235
Moscow, Russian Federation
Roman F. Mukhametshin
RUDN University
Email: ms.s.karina@mail.ru
ORCID iD: 0000-0001-6975-7018
Moscow, Russian Federation
Sergey G. Ivashkevich
RUDN University
Email: ms.s.karina@mail.ru
ORCID iD: 0000-0001-6995-8629
Moscow, Russian Federation
References
- Klinovskaya AS, Bazikyan EA, Ivanova AO. Vitamin D a factor influencing the processes of bone tissue restitution of the maxillofacial area. Russian Dentistry. 2022;15(1):51-53. doi: 10.17116/rosstomat20221501125. (In Russian).
- El Sayed SA, Nezwek TA, Varacallo M. Physiology Bone. In: StatPearls. Treasure Island (FL): StatPearls Publishing. 2021. p. 45-64.
- Kishchuk V, Bondarchuk O, Dmitrenko I, Bartsihovskyiy A, Lobko K, Grytsun Y, Isniuk A. Morphological dynamics of bone tissue reparative regeneration during the implantation of biocomposite “syntekost” into the cavity of the traumatic defect of the iliac crest of a rabbit in the experiment. Wiad Lek. 2018;71(7):1281-1288.
- Baig MA, Bacha D. Histology, Bone. Treasure Island (FL): StatPearls Publishing. 2022.
- Vasilyuk VP, Straube GI, Chetvernykh VA. Conceptual approach to eliminating jaw bone defects. Institute of Dentistry. 2020;1(86):107-109. (In Russian).
- Majidinia M, Sadeghpour A, Yousefi B. The roles of signaling pathways in bone repair and regeneration. J Cell Physiol. 2018;233(4):2937-2948. doi: 10.1002/jcp.26042.
- Rowe P, Koller A, Sharma S. Physiology, Bone Remodeling. Treasure Island (FL): StatPearls Publishing. 2022.
- Muraev AA, Ivanov SY, Ivashkevich SG, Gorshenev VN, Teleshev AT, Kibardin AV, Kobets KK, Dubrovin VK. Organotypic bone grafts-a prospect for the development of modern osteoplastic materials. Dentistry. 2017;96(3):36-37. doi: 10.17116/stomat201796336-39. (In Russian).
- Dimitriou R, Mataliotakis GI, Angoules AG, Kanakaris NK, Giannoudis PV. Complications following autologous bone graft harvesting from the iliac crest and using the RIA: a systematic review. Injury. 2011;42(2S):3-15. doi: 10.1016/j.injury.2011.06.015.
- Brydone AS, Meek D, Maclaine S. Bone grafting, orthopaedic biomaterials, and the clinical need for bone engineering. Proc Inst Mech Eng H. 2010;224(12):1329-43. doi: 10.1243/09544119JEIM770.
- Kolk A, Handschel J, Drescher W, Rothamel D, Kloss F, Blessmann M, Heiland M, Wolff KD, Smeets R. Current trends and future perspectives of bone substitute materials - from space holders to innovative biomaterials. J Craniomaxillofac Surg. 2012;40(8):706-18. doi: 10.1016/j.jcms.2012.01.002.
- Khan SN, Cammisa FP Jr, Sandhu HS, Diwan AD, Girardi FP, Lane JM. The biology of bone grafting. J Am Acad Orthop Surg. 2005;13(1):77-86.
- Zhang S, Li X, Qi Y, Ma X, Qiao S, Cai H, Zhao BC, Jiang HB, Lee ES. Comparison of Autogenous Tooth Materials and Other Bone Grafts. Tissue Eng Regen Med. 2021;18(3):327-341. doi: 10.1007/s13770-021-00333-4.
- Shahnaseri S, Sheikhi M, Hashemibeni B, Mousavi SA, Soltani P. Comparison of autogenous bone graft and tissue-engineered bone graft in alveolar cleft defects in canine animal models using digital radiography. Indian J Dent Res. 2020;31(1):118-123. doi: 10.4103/ijdr.IJDR_156_18.
- Mudraya VN, Stepanenko IG, Shapavalov AS. The use of osteoplastic materials in modern dentistry. Ukrainian Journal of Clinical and Laboratory Medicine. 2010;5(1):52-57. (In Russian).
- Martin WB, Sicard R, Namin SM, Ganey T. Methods of Cryoprotectant Preservation: Allogeneic Cellular Bone Grafts and Potential Effects. Biomed Res Int. 2019;2019:5025398. doi: 10.1155/2019/5025398.
- Starch-Jensen T, Deluiz D, Bruun NH, Tinoco EMB. Maxillary Sinus Floor Augmentation with Autogenous Bone Graft Alone Compared with Alternate Grafting Materials: A Systematic Review and Meta-Analysis Focusing on Histomorphometric Outcome. J Oral Maxillofac Res. 2020;11(3): e2. doi: 10.5037/jomr.2020.11302.
- Alekseev KV, Blynskaya EV, Tishkov S.V. Theoretical and practical foundations of lyophilization of drugs. Printing house “Mittel press”. 2019. p. 219. (In Russian).
- Cao GD, Pei YQ, Liu J, Li P, Liu P, Li XS. Research progress on bone defect repair materials. Zhongguo Gu Shang. 2021;34(4):382-8. doi: 10.12200/j.issn.1003-0034.2021.04.018.
- Baldwin P, Li DJ, Auston DA, Mir HS, Yoon RS, Koval KJ. Autograft, Allograft, and Bone Graft Substitutes: Clinical Evidence and Indications for Use in the Setting of Orthopaedic Trauma Surgery. J Orthop Trauma. 2019;33(4):203-213. doi: 10.1097/BOT.0000000000001420.
- Tournier P, Guicheux J, Paré A, Maltezeanu A, Blondy T, Veziers J, Vignes C, André M, Lesoeur J, Barbeito A, Bardonnet R, Blanquart C, Corre P, Geoffroy V, Weiss P, Gaudin A. A partially demineralized allogeneic bone graft: in vitro osteogenic potential and preclinical evaluation in two different intramembranous bone healing models. Sci Rep. 2021;11(1):4907. doi: 10.1038/s41598-021-84039-6.
- Kasper JC, Hedtrich S, Friess W. Lyophilization of Synthetic Gene Carriers. Methods Mol Biol. 2019;1943:211-225. doi: 10.1007/978-1-4939-9092-4_14.
- Bikmullina RR, Yarullin RS, Sakhabiev AM, Mikhailov EM. Osteotropic materials for the restoration of defects after tissue. Problems of scientific thought. 2022;2(4):23-26. (In Russian).
- Zhao R, Yang R, Cooper PR, Khurshid Z, Shavandi A, Ratnayake J. Bone Grafts and Substitutes in Dentistry: A Review of Current Trends and Developments. Molecules. 2021;18;26(10):3007. doi: 10.3390/molecules26103007.
- Martirosyan RV, Bostanjyan TM, Sarkisyan MA, Voronin AV. Preservation of the hole after removal of the maxillary premolar using Geistlich Mucograft® Seal and Geistlich Bio - Oss®. Stomatology for everyone. 2016;3:22-24. (In Russian).
- Kolk A, Handschel J, Drescher W, Rothamel D, Kloss F, Blessmann M, Heiland M, Wolff KD, Smeets R. Current trends and future perspectives of bone substitute materials-from space holders to innovative biomaterials. J Craniomaxillofac Surg. 2012;40(8):706-18. doi: 10.1016/j.jcms.2012.01.002.
- Sartori S, Silvestri M, Forni F, Icaro Cornaglia A, Tesei P, Cattaneo V. Ten-year follow-up in a maxillary sinus augmentation using anorganic bovine bone (Bio-Oss). A case report with histomorphometric evaluation. Clin Oral Implants Res. 2003;14(3):369-72. doi: 10.1034/j.1600-0501.2003.140316.x.
- Bikbulatova IR, Musinova AS, Serdyuk SV. Bone plastic material in dentistry. Natural and medical sciences. Student scientific forum. Electronic collection of articles based on the materials of the XVI student international scientific and practical conference. 2019;5(16):40-46. (In Russian).
- Zhuang G, Mao J, Yang G, Wang H. Influence of different incision designs on bone increment of guided bone regeneration (Bio-Gide collagen membrane + Bio-OSS bone powder) during the same period of maxillary anterior tooth implantation. Bioengineered. 2021;12(1):2155-2163. doi: 10.1080/21655979.2021.1932209.
- Kobozev MI, Balandina MA, Muraev AA, Ryabova VM, Ivanov SY. Preservation of alveolar ridge volume: an analysis of the results of cone beam computed tomography. The Journal of scientific articles Health and Education Millennium. 2016;18(1):84-91. (In Russian).
- Kao ST, Scott DD. A review of bone substitutes. Oral Maxillofac Surg Clin North Am. 2007;19(4):513-21. doi: 10.1016/j.coms.2007.06.002.
- Fukuba S, Okada M, Nohara K, Iwata T. Alloplastic Bone Substitutes for Periodontal and Bone Regeneration in Dentistry: Current Status and Prospects. Materials (Basel). 2021;14(5):1096. doi: 10.3390/ma14051096.
- Gazhva YV, Bonartsev AP, Mukhametshin RF, Zharkova II, Andreeva NV, Makhina TK, Myshkina VL, Bespalova AE, Zernov AL, Ryabova VM, Ivanova EV, Bonartseva GA, Mironov AA, Shaitan KV, Volkov AV, Muraev AA, Ivanov SY. Development and study of in vivo and in vitro osteoplastic material based on the composition of hydroxyapatite, poly-3-hydroxybutyrate and sodium alginate. СTM. 2014;6(1):6-13. (In Russian).
- Muraev AA, Ivanov SY, Ryabova VM, Artifeksova FF, Volodina EV, Polyakova IN. Toxicity and biological activity of a new bone substitute material based on non-demineralized collagen containing vascular endothelial growth factor. Modern technologies in medicine. 2012;(3):19-25. (In Russian).
- Ivanov SY, Mukhametshin RF, Muraev AA, Bonartsev AP, Ryabova VM. Synthetic materials used in dentistry to replace bone defects. Modern problems of science and education. 2013;60. (In Russian).
- Haugen HJ, Lyngstadaas SP, Rossi F, Perale G. Bone grafts: which is the ideal biomaterial? J Clin Periodontol. 2019;46(21):92-102. doi: 10.1111/jcpe.13058.
- Mukhametov UF, Lyulin SV, Borzunov DY. Alloplastic and implant materials for bone grafting: literature review. Creative Surgery and Oncology. 2021;11(4):343-353. doi: 10.24060/2076-3093-2021-11-4-343-353. (In Russian).
- Ku JK, Hong I, Lee BK, Yun PY, Lee JK. Dental alloplastic bone substitutes currently available in Korea. J Korean Assoc Oral Maxillofac Surg. 2019;45(2):51-67. doi: 10.5125/jkaoms.2019.45.2.51.
- Park SY, Kim KH, Kim S, Lee YM, Seol YJ. BMP-2 Gene Delivery-Based Bone Regeneration in Dentistry. Pharmaceutics. 2019;11(8):393. doi: 10.3390/pharmaceutics11080393.
- da Silva Madaleno C, Jatzlau J, Knaus P. BMP signalling in a mechanical context-Implications for bone biology. Bone. 2020;137:115416. doi: 10.1016/j.bone.2020.115416.
- Muraev AA, Ivanov SY, Artifeksova AA, Ryabova VM, Volodina EV, Polyakova IN. Study of the biological properties of a new osteoplastic material based on non-demineralized collagen containing vascular endothelial growth factor in the replacement of bone defects. Modern technologies in medicine. 2012;21-26. (In Russian).
- Geng Y, Duan H, Xu L, Witman N, Yan B, Yu Z, Wang H, Tan Y, Lin L, Li D, Bai S, Fritsche-Danielson R, Yuan J, Chien K, Wei M, Fu W. BMP-2 and VEGF-A modRNAs in collagen scaffold synergistically drive bone repair through osteogenic and angiogenic pathways. Commun Biol. 2021;4(1):82. doi: 10.1038/s42003-020-01606-9.
- Melincovici CS, Boşca AB, Şuşman S, Marginean M, Mihu C, Istrate M, Moldovan IM, Roman AL, Mihu CM. Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis. Rom J Morphol Embryol. 2018;59(2):455-467.
- Bai J, Li L, Kou N, Bai Y, Zhang Y, Lu Y, Gao L, Wang F. Low level laser therapy promotes bone regeneration by coupling angiogenesis and osteogenesis. Stem Cell Res Ther. 2021;12(1):432. doi: 10.1186/s13287-021-02493-5.
- Senatov F, Zimina A, Chubrik A, Kolesnikov E, Permyakova E, Voronin A, Poponova M, Orlova P, Grunina T, Nikitin K, Krivozubov M, Strukova N, Generalova M, Ryazanova A, Manskikh V, Lunin V, Gromov A, Karyagina A. Effect of recombinant BMP-2 and erythropoietin on osteogenic properties of biomimetic PLA/PCL/HA and PHB/HA scaffolds in critical-size cranial defects model. Mater Sci Eng C Mater Biol Appl. 2022;135:112680. doi: 10.1016/j.msec.2022.112680.
- Vasilyev AV, Kuznetsova VS, Galitsyna EV, Bukharova TB, Osidak EO, Fatkhudinova NL, Leonov GE, Babichenko II, Domogatsky SP, Goldstein DV, Kulakov AA. Biocompatibility and osteoinductive properties of collagen and fibronectin hydrogel impregnated with rhBMP-2. Stomatologiia (Mosk). 2019;98(6.2):5-11. doi: 10.17116/stomat2019980625. (In Russian)
- Zha Y, Li Y, Lin T, Chen J, Zhang S, Wang J. Progenitor cell-derived exosomes endowed with VEGF plasmids enhance osteogenic induction and vascular remodeling in large segmental bone defects. Theranostics. 2021;11(1):397-409. doi: 10.7150/thno.50741.
- Profeta AC, Huppa C. Bioactive-glass in Oral and Maxillofacial Surgery. Craniomaxillofac Trauma Reconstr. 2016;9(1):1-14. doi: 10.1055/s-0035-1551543.
- Apanasevich V, Papynov E, Plehova N, Zinoviev S, Kotciurbii E, Stepanyugina A, Korshunova O, Afonin I, Evdokimov I, Shichalin O, Bardin A, Nevozhai V, Polezhaev A. Morphological Characteristics of the Osteoplastic Potential of Synthetic CaSiO3/HAp Powder Biocomposite. J Funct Biomater. 2020;11(4):68. doi: 10.3390/jfb11040068.
- Dunaev MV, Kitaev VA, Matavkina MV, Druzhinin AE, Bubnov AS. Comparative analysis and clinical experience with osteoplastic materials based on non-demineralized bone collagen and artificial hydroxylapatite at the close of bone defects in ambulatory surgical dentistry. Vestn Ross Akad Med Nauk. 2014;69(7-8):112-120. doi: 10.15690/vramn.v69i7-8.1117. (In Russian)
Supplementary files
