Long exposure impact of antibiotics subinhibitory doses and silver nanoparticles on uropathogenic bacteria

Capa

Citar

Texto integral

Resumo

Relevance. Although the primary purpose of using antibiotics is to treat infectious diseases, their misuse gradually leads to loss of their effectiveness. The aim of the current investigation was to explore the changes that occur in uropathogenic bacteria after long exposure to antimicrobials. Materials and Methods. We compared the effects of long-term exposure to ampicillin, cefazoline, kanamycin and silver nanoparticles (AgNPs) on susceptibility, biofilm formation and planktonic bacteria in 4 clinical uropathogenic strains namely Escherichia coli (UPEC), Staphylococcus aureus (S. aureus), Enterococcus faecalis (E. faecalis) and Streptococcus agalactiae (St. agalactiae). The minimum inhibitory concentrations (MIC) were determined using the microplate mircodilution method and bacteria were exposed to increasing concentrations of each antimicrobial (from MIC/2 to MIC) prepared in the brain heart infusion broth for 8 days. The susceptibility of bacteria to antibiotics was assessed using the Kirby Bauer disc diffusion method and the biofilm formation was assessed using crystal violet bacterial attachment assay. Results and Discussion. The data in this investigation highlight that long-term exposure to antimicrobials may induce changes in susceptibility to other antibiotics and biofilm formation in Uropathogenic strains. Indeed, exposure to ampicillin made E. faecalis resistant to ceftazidime and St agalactiae resistant to tetracycline, ceftazidime/clavulanate and ceftazidime. Following exposure to cefazolin, a significant decrease in susceptibility was observed in E. coli to ceftazidime/clavulanate and ceftazidime while S. aureus became resistant to ceftazidime/clavulanate, ceftazidime and to ceftriaxone. Similar variations were observed on St agalactiae and E. faecalis, which in addition to the 3 antibiotics above-mentioned, have become resistant to tetracycline. The most significant variations in susceptibility to antibiotics were observed following exposure to kanamycin: E. coli developed resistance to ceftazidime and a decrease in sensitivity was noted on ceftazidime/clavulanate while S. aureus, E. faecalis and St. agalactiae all 3 became resistant to ceftazidime/clavulanate and ceftazidime. In addition, except for E. coli all the bacteria in this investigation which had undergone successive passages in AgNPs developed resistance to ceftazidime/ clavulanate and ceftazidime. Bacteria exposed to ampicillin and cefazolin produced more biofilms than their respective controls. Conclusion. Long term exposure of uropathogens to antibiotics and AgNPs induces significant changes in susceptibility to other antibiotics and biofilm formation and antibiotics should therefore only be used when necessary.

Sobre autores

Manga Mbarga

RUDN University

Email: josepharsenembarga@yahoo.fr
ORCID ID: 0000-0001-9626-9247
Moscow, Russian Federation

Razan Marouf

RUDN University

Email: josepharsenembarga@yahoo.fr
ORCID ID: 0000-0001-9581-5381
Código SPIN: 5385-0884
Moscow, Russian Federation

Irina Podoprigora

RUDN University

Email: josepharsenembarga@yahoo.fr
ORCID ID: 0000-0003-4099-2967
Código SPIN: 7255-4454
Moscow, Russian Federation

Kitio Anyutoulou

RUDN University

Email: josepharsenembarga@yahoo.fr
ORCID ID: 0000-0001-6219-0004
Moscow, Russian Federation

Yuri Chapurin

RUDN University

Email: josepharsenembarga@yahoo.fr
ORCID ID: 0000-0002-3871-9200
Moscow, Russian Federation

Irina Sharova

RUDN University

Autor responsável pela correspondência
Email: josepharsenembarga@yahoo.fr
ORCID ID: 0000-0002-0932-5376
Moscow, Russian Federation

Bibliografia

  1. Penesyan A, Paulsen IT, Gillings MR, Kjelleberg S, Manefield MJ. Secondary Effects of Antibiotics on Microbial Biofilms. Frontiers in Microbiology. 2020;11:2109. doi: 10.3389/fmicb.2020.02109.
  2. Joseph AMM, Jorelle AB, Sarra S, Podoprigora IV, Davares AK, Ingrid NK, Carime BZ. Short review on the potential alternatives to antibiotics in the era of antibiotic resistance. Journal of Applied Pharmaceutical Science. 2021;12(1):029-040. doi: 10.7324/JAPS.2021.120102.
  3. Mbarga MJA. Podoprigora IV, Davares AKL, Esther N, Senyagin AN. Urinary tract infections: Virulence factors, resistance to antibiotics, and management of uropathogenic bacteria with medicinal plants - A review. Journal of Applied Pharmaceutical Science. 2021;11(7):001-012. doi: 10.7324/JAPS.2021.110701.
  4. Abraham SN, Miao Y. The nature of immune responses to urinary tract infections. Nature Reviews Immunology. 2015; 15(10): 655. doi: 10.1038/nri3887.
  5. Gupta K, Hooton TM, Naber KG, Wullt B, Colgan R, Miller LG. Soper DE. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: a 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clinical infectious diseases. 2011;52(5): e103-e120. doi: 10.1093/cid/ciq257.
  6. Bader MS, Loeb M, Leto D, Brooks AA. Treatment of urinary tract infections in the era of antimicrobial resistance and new antimicrobial agents. Postgraduate Medicine. 2020;132(3):234-250. doi: 10.1080/00325481.2019.1680052.
  7. Karam MRA, Habibi M, Bouzari S. Urinary tract infection: Pathogenicity, antibiotic resistance and development of effective vaccines against Uropathogenic Escherichia coli. Molecular immunology. 2019;108:56-67. doi: 10.1016/j.molimm.2019.02.007.
  8. Lee DS, Lee SJ, Choe HS. Community-acquired urinary tract infection by Escherichia coli in the era of antibiotic resistance. BioMed research international. 2018;7656752. doi: 10.1155/2018/7656752.
  9. Henly EL, Dowling JAR, Maingay JB, Lacey MM, Smith TJ, Forbes S. Biocide exposure induces changes in susceptibility, pathogenicity, and biofilm formation in uropathogenic Escherichia coli. Antimicrobial agents and chemotherapy. 2019;63(3): e01892-18. doi: 10.1128/AAC.01892-18.
  10. Blanco P, Hjort K, Martínez JL, Andersson DI. Antimicrobial Peptide Exposure Selects for Resistant and Fit Stenotrophomonas maltophilia Mutants That Show Cross-Resistance to Antibiotics. Msphere. 2020;5(5): e00717-20. doi: 10.1128/mSphere.00717-20.
  11. Allen MJ, White GF, Morby AP. The response of Escherichia coli to exposure to the biocide polyhexamethylene biguanide. Microbiology. 2006;152((Pt 4):989-1000. doi: 10.1099/mic.0.28643-0.
  12. Mbarga MJA, Smolyakova LA, Podoprigora IV, Evaluation of Apparent Microflora and Study of Antibiotic Resistance of Coliforms Isolated from the Shells of Poultry Eggs in Moscow-Russia. Journal of Advances in Microbiology. 2020;20(4):70-77. doi: 10.9734/jamb/2020/v20i430242.
  13. NCCLs: Clinical & Laboratory Standards Institute. Control methods. Biological and micro-biological factors: Determination of the sensitivity of microorganisms to antibacterial drugs. Federal Center for Sanitary and Epidemiological Surveillance of Ministry of Health of Russia. 2019.
  14. Veiga A, Maria da Graça TT, Rossa LS, Mengarda M., Stofella NC, Oliveira LJ, … Murakami FS. Colorimetric microdilution assay: validation of a standard method for determination of MIC, IC50 %, and IC90 % of antimicrobial compounds. Journal of microbiological methods. 2019;162: 50-61. doi: 10.1016/j.mimet.2019.05.003.
  15. Manga MJA, Podoprigora IV, Volina EG, Ermolaev AV, Smolyakova LA. Evaluation of changes induced in the probiotic Escherichia coli M17 following recurrent exposure to antimicrobials. Journal of Pharmaceutical Research International. 2021;33(29B):158-167. doi: 10.9734/jpri/2021/v33i29B3160.
  16. Arsene MM, Podoprigora IV, Grigorievna VE, Davares AK, Sergeevna DM, Nikolaevna SI. Prolonged exposure to antimicrobials induces changes in susceptibility to antibiotics, biofilm formation and pathogenicity in staphylococcus aureus. J. Pharm. Res. Int. 2022;33(34B):140-151. doi: 10.9734/JPRI/2021/v33i34B31856.
  17. Joshi S. Hospital antibiogram: a necessity. Indian journal of medical microbiology. 2010;28(4):277. doi: 10.4103/0255-0857.71802.
  18. Arsene, M. M., Viktorovna, P. I., Alla, M.V., Mariya, M.A., Sergei, G.V., Cesar, E., … & Olga, P.V. Optimization of Ethanolic Extraction of Enantia chloranta Bark, Phytochemical Composition, Green Synthesis of Silver Nanoparticles, and Antimicrobial Activity. Fermentation. 2022; 8(10): 530. doi: 10.3390/fermentation8100530.
  19. Arsene, M. M., Viktorovna, P. I., Sergei, G.V., Hajjar, F., Vyacheslavovna, Y. N., Vladimirovna, Z.A., … & Sachivkina, N. Phytochemical Analysis, Antibacterial and Antibiofilm Activities of Aloe vera Aqueous Extract against Selected Resistant Gram-Negative Bacteria Involved in Urinary Tract Infections. Fermentation. 2022;8(11): 626. doi: 10.3390/fermentation8110626.
  20. Windels EM, Van den Bergh B, Michiels J. Bacteria under antibiotic attack: Different strategies for evolutionary adaptation. PLoS pathogens. 2020;16(5): e1008431. doi: 10.1371/journal.ppat.1008431.
  21. Leonard A, Möhlis K, Schlüter R, Taylor E, Lalk M, Methling K. Exploring metabolic adaptation of Streptococcus pneumoniae to antibiotics. The Journal of antibiotics. 2020;73(7):441-454. doi: 10.1038/s41429-020-0296-3.
  22. Akhova AV, Tkachenko AG. Multifaceted role of polyamines in bacterial adaptation to antibiotic-mediated oxidative stress. The Microbiological Society of Korea. 2020;56(2):103-110. doi: 10.7845/kjm.2020.0013.
  23. Paun VI, Lavin P, Chifiriuc MC, Purcarea C. First report on antibiotic resistance and antimicrobial activity of bacterial isolates from 13,000-year old cave ice core. Scientific reports. 2021;11(1):1-15. doi: 10.1038/s41598-020-79754-5.
  24. Devanesan S, Ponmurugan K, AlSalhi MS, Al-Dhabi NA. Cytotoxic and antimicrobial efficacy of silver nanoparticles synthesized using a traditional phytoproduct, asafoetida gum. International Journal of Nanomedicine. 2020;15:4351. doi: 10.2147/IJN.S258319.
  25. Loo YY, Rukayadi Y, Nor-Khaizura MAR, Kuan CH, Chieng BW, Nishibuchi M, Radu S. In vitro antimicrobial activity of green synthesized silver nanoparticles against selected gram-negative foodborne pathogens. Frontiers in microbiology. 2018;9:1555. doi: 10.3389/fmicb.2018.01555.
  26. Adamus-Białek W, Wawszczak M, Arabski M, Majchrzak M, Gulba M, Jarych D, Głuszek S. Ciprofloxacin, amoxicillin, and aminoglycosides stimulate genetic and phenotypic changes in uropathogenic Escherichia coli strains. Virulence. 2019;10(1):260-276. doi: 10.1080/21505594.2019.1596507.
  27. Garcia Rivera MA. Antibiotic uptake in Pseudomonas aeruginosa and its consequences on the metabolome (Doctoral dissertation, Hannover: Institutionelles Repositorium der Leibniz Universität Hannover); 2021. doi: 10.15488/10509.
  28. Naveed M. Chaudhry Z, Bukhari SA, Meer B, Ashraf H. Antibiotics resistance mechanism. In: Antibiotics and Antimicrobial Resistance Genes in the Environment. Elsevier. 2020. p.292-312. doi: 10.1016/j.crmicr.2021.100027.
  29. Papkou A, Hedge J, Kapel N, Young B, MacLean RC. Efflux pump activity potentiates the evolution of antibiotic resistance across S. aureus isolates. Nature communications. 2020;11(1):1-15. doi: 10.1038/s41467-020-17735-y.
  30. Green AT, Moniruzzaman M, Cooper CJ, Walker JK, Smith JC, Parks JM, Zgurskaya HI. Discovery of multidrug efflux pump inhibitors with a novel chemical scaffold. Biochimica et Biophysica Acta (BBA)-General Subjects. 2020;1864(6):129546. doi: 10.1016/j.bbagen.2020.129546.
  31. Pokludová L, Prátová H. Wider Context of Antimicrobial Resistance, Including Molecular Biology Perspective and Implications for Clinical Practice. In: Pokludová L., editor. Antimicrobials in Livestock 1: Regulation, Science, Practice. Cham: Springer; 2020. p. 233-279. doi: 10.1007/978-3-030-46721-0_9.
  32. WHO. New report calls for urgent action to avert antimicrobial resistance crisis. https://www.who.int/news/item/29-04-2019-new-report-calls-for-urgent-action-to-avert-antimicrobial-resistance-crisis. 2019. Accessed 2021 January 28.
  33. Banin E, Hughes D, Kuipers OP. Bacterial pathogens, antibiotics and antibiotic resistance. FEMS microbiology reviews. 2017;41(3):450-452. doi: 10.1093/femsre/fux016.
  34. Saracino IM., Fiorini G, Zullo A, Pavoni M, Saccomanno L, Vaira D. Trends in primary antibiotic resistance in H. pylori strains isolated in Italy between 2009 and 2019. Antibiotics. 2020;9(1):26. doi: 10.3390/antibiotics9010026.
  35. Gebreyohannes G, Nyerere A, Bii C, Sbhatu DB. Challenges of intervention, treatment, and antibiotic resistance of biofilm-forming microorganisms. Heliyon. 2019;5(8): e02192. doi: 10.1016/j.heliyon.2019.e02192.
  36. Behzadi P, Urbán E, Gajdács M. Association between biofilm-production and antibiotic resistance in uropathogenic Escherichia coli (UPEC): an in vitro study. Diseases. 2020;8(2):17. doi: 10.3390/diseases8020017.
  37. Katongole P, Nalubega F, Florence NC, Asiimwe B, Andia I. Biofilm formation, antimicrobial susceptibility and virulence genes of Uropathogenic Escherichia coli isolated from clinical isolates in Uganda. BMC Infectious Diseases. 2020;20(1):1-6. doi: 10.1186/s13756-016-0109-4.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».