Human-Computer Interaction in Translation Activity: Fluency of Machine Translation

Cover Page

Cite item

Full Text

Abstract

Digitalization is one of the key distinctive features of modern environment and social life. Nowadays more and more functions are transferred to the artificial mind. How effective is the replacement of human activity with computer activity? In the given article, this problem is solved by an example of integration of digital technologies into translation activities. It this paper, emphasis is placed on the quality of machine translation (MT) output of legal texts in the language pair English - Slovak. It studies a Criminal Code formulated in the Slovak language which was translated by a human translator into English and consequently via machine translation system Google Translate (GT) back into Slovak. The back-translation - translation of a translated text back into its original language - as a quality assessment tool to detect discrepancies, mistranslations and inevitable differences between the source text and the target text was used. The quality of MT output was evaluated according to Multidimensional Quality Metrics (MQM) standards with the focus on the dimension of ‘Fluency’. The multiple comparisons were applied to determine which issues (errors) in ‘Fluency’ dimension differ from the others. A statistically significant difference is noticed between ‘Agreement’ and other issues, as well as between ‘Ambiguity’ and other issues. The errors in ‘Agreement’ are related to the differences between the languages: English is considered mostly an analytic language, Slovak represents a synthetic language. The issues in the ‘Ambiguity’ dimension correlate with the type of the text being examined, since legal texts are characterized by relatively complicated wording and numerous terms; moreover, accuracy and unambiguity need to be preserved. Generally, the MT output is able to provide users with basic information about the text. On the other hand, most of the segments need revision and/or correction; in such cases, human intervention and post-editing is necessary.

About the authors

Katarina Welnitzova

Constantine the Philosopher University in Nitra

Author for correspondence.
Email: kwelnitzova@ukf.sk

assistant of Translation Studies at the Department of Translation Studies

67 Stefanikova St, Nitra, 949 01, Slovak Republic

Barbara Jakubickova

Constantine the Philosopher University in Nitra

Email: baja.jakubickova@gmail.com

PhD student at the Department of Translation Studies

67 Stefanikova St, Nitra, 949 01, Slovak Republic

Roman Králik

Kierkegaard Society in Slovakia; Kazan (Volga region) Federal University

Email: kierkegaard@centrum.cz

PhD., Professor of Philosophy, is President of Kierkegaard Society in Slovakia and Central European Research Institute of Soren Kierkegaard (Sala, Slovakia); senior research fellow at Scientific and Educational Center of Pedagogical Researches at the Kazan (Volga region) Federal University (Kazan, Russia).

18 Hurbanova St, Sala, 92701, Slovak Republic; 18 Kremlyovskaya St, Kazan, 420008, Russian Federation

References

  1. Absolon, J., Munková, D., & Welnitzová, K. (2018). Machine Translation: Translation of the Future? Machine Translation in the Context of the Slovak Language. Praha: Verbum.
  2. Aranberri, N., Labaka, G., Arantza Díaz De, I., et al. (2014). Comparison of post-editing productivity between professional translators and lay users. Proceedings of the Third Workshop on Post-Editing Technology and Practice (WPTP-3), 20-33.
  3. Azizi, M., Tkacova, H., Pavlikova, M., & Jenisova, Z. (2020). Extensive Reading and the Writing Ability of EFL Learners: The Effect of Group Work. European Journal of Contemporary Education, 9(4), 726-739. https://doi.org/10.13187/ejced.2020.4.726
  4. Bocquet, C. (1994). Pour une méthode de traduction juridique. prilly: cb service.
  5. Bojar, O. & Tmachyna, A. (2011). Improving translation model by monolingual data. Proceedings of the Sixth Workshop on Statistical Machine Translation, 330-336.
  6. Brislin, R.W. (1970). Back-Translation for Cross-Cultural Research. In Journal of Cross-Cultural Psychology, 1(3), 185-216. https://doi.org/10.1177/135910457000100301
  7. Brislin, R.W. (1986). The Wording and Translation of Research Instruments. In W.L. Lonner, & J.W. Berry (Eds.), Field Methods in Cross-Cultural Research (pp. 137-164). Newbury Park, CA: Sage.
  8. Carl, M., & Kay, M. (2012). Gazing and Typing Activities during Translation: A comparative study of translation units of professional and student translators. Meta, 56(4), 89-111. https://doi.org/10.7202/1011262ar
  9. Čulo, O., Gutermuth, S., Hansen-Schirra, S., et al. (2014). The Influence of Post-Editing on Translation Strategies. In Sh. O’Brien et al. (Eds.), Post-editing of Machine Translation. Processes and Applications (pp. 200-218). Newcastle upon Tyne: Cambridge Scholars Publishing.
  10. Dept, S., Ferrari, A., & Halleux, B. (2017). Translation and cultural appropriateness of survey material in large-scale assessments. In P. Lietz, J.C. Cresswell, K.F. Rust & R.J. Adams (Eds.), Implementation of Large-Scale Education Assessments, 153-172. Hoboken, NJ: John Wiley & Sons. https://doi.org/10.1002/9781118762462.ch6
  11. Dolník, J. (2013). Všeobecná Jazykoveda. Opis a Vysvetľovanie Jazyka. Bratislava: Veda.
  12. Ďuricová, A. (2013). Typológia právnych textov justičných orgánov. Od textu k prekladu VIII. Praha: Jednota tlumočníků a překladatelů.
  13. García, I. (2010). Is machine translation ready yet? Target, 22(1), 7-21.
  14. Goutte, C., Cancedda, N., Dymetman, M., & Foster, G. (2009). Learing Machine Translation. The MIT Press.
  15. Gromová, E., & Müglová, D. (2005). Kultúra - interkulturalita - translácia. Nitra: Univerzita Konštantína Filozofa v Nitre.
  16. Guerberof, A. (2014). Correlations between productivity and quality when post-editing in a professional context. Machine translation, 28(3-4), 165-186. https://doi.org/10.1007/s10590-014-9155-y
  17. Harkness, J., & Schoua-Glusberg, A. (1998). Questionnaires in translation. In J. Harkness (Ed.), Cross-Cultural Survey Equivalence (pp. 87-126). Manheim: Zuma-nachrichten spezial 3.
  18. Harkness, J., Villar, A., & Edwards, B. (2010). Translation, adaptation, and design. In J.A. Harkness, M. Braun, B. Edwards, T.P. Johnson, L. Lyberg, P.P. Mohler & T.W. Smith (Eds.), Wiley series in survey methodology. Survey methods in multinational, multiregional, and multicultural contexts (pp. 115-140). Hoboken, NJ: John Wiley & Sons.
  19. Hoang, C.D., Koehn, P., Haffari, G., & Cohn, T. (2018). Iterative Back-Translation for Neural Machine Translation. Proceedings of th 2nd Workshop on Neural Machine Translation and Generation, 18-24.
  20. Chidlow, A., Plakoyiannaki, E., & Welch, C. (2014). Translation in cross-language international business research: beyond equivalence. Journal of International Business Studies, 45(5), 562-582. https://doi.org/10.1057/jibs.2013.67
  21. Khonamri, F., Ahmadi, F., Pavlikova, M., & Petrikovicova, L. (2020). The Effect of Awareness Raising and Explicit Collocation Instruction on Writing Fluency of EFL Learners European. Journal of Contemporary Education, 9(4), 786-806. https://doi.org/10.13187/ejced.2020.4.786
  22. Koponen, M., & Salmi, L. (2015). On the correctness of machine translation: A machine translation post-editing task. Journal of Specialised Translation, 23, 118-136.
  23. Melby, A., Fields, P.J., & Housley, J. (2014). Assessment of Post-Editing via Structured Translation Specifications. In Sharon O’Brien et al. (Eds.), Post-editing of Machine Translation. Processes and Applications (pp. 274-299). Newcastle upon Tyne: Cambridge Scholars Publishing.
  24. MQM. (2016). Multidimensional Quality Metrics (MQM) Definition. Retrieved July, 2019, from http://qt21.eu/mqm-definition
  25. Müglová, D. (2009). Komunikácia Tlmočenie Preklad alebo Prečo spadla Babylonská veža? Nitra: ENIGMA.
  26. Munkova, D. (2013). Prístupy k strojovému prekladu (modely, metódy a problémy strojového prekladu). Nitra: Univerzita Konštantína Filozofa v Nitre.
  27. Munkova, D., & Munk, M. (2016). Evalvácia strojového prekladu. Nitra: Univerzita Konštantína Filozofa v Nitre.
  28. Newmark, P. (1982). Approaches to Translation. Oxford: Pergamon Press Ltd.
  29. O’Brien, S., Balling, L. W., et al. (2014). Post-editing of Machine Translation: Processes and Application. Cambridge Scholars Publishing, Newcastle upon Tyne.
  30. Ondruš, S., & Sabol, J. (1984). Úvod do štúdia jazykov. Bratislava: SPN.
  31. Plitt, M., & Masselot, F. (2010). A Productivity Test of Statistical Machine Translation Post-Editing in a Typical Localisation Context. The Prague Bulletin of Mathematical Linguistics, 93, 7-16.
  32. Popović, M., Lommel, A., Burchardt, A., et al. (2014). Relations between different types of post-editing operations, cognitive effort and temporal effort. Proceedings of the 17th Annual Conference of the European Association for Machine Translation, EAMT 2014, 191-198.
  33. Prunč, E. (2007). Entwicklungslinien der Translationwissenschaft: Von den Asymmetrien der Sprachen du den Asymmetrien der Macht. Verlag: Frank & Timme.
  34. Schneiderová, A. (2013). Klasifikácia právnych textov a problematika ich prekladu. Od textu k prekladu VIII. Praha: Jednota tlumočníků a překladatelů.
  35. Son, J. (2018). Back translation as a documentation tool. The International Journal for Translation and Interpreting, 10(2), 89-100. https://doi.org/10.12807/ti.110202.2018.a07
  36. Svoboda, T. (2015). Hodnocení kvality strojového překladu. Kvalita a hodnocení překladu: Modely a aplikace. Olomouc: Univerzita Palackého v Olomouci.
  37. TAUS. (2010a). Machine Translation Post-editing Guidelines. Technical report. Retrieved July, 2019, from https://www.taus.net/academy/best-practices/postedit-best-practices/machine-translation-post-editing-guidelines
  38. TAUS. (2010b). Post-editing in Practice. A TAUS Report. Technical report. Retrieved July, 2019, from https://www.taus.net/think-tank/reports/postedit-reports/postediting-in-practice
  39. Vanko, J., & Auxova, D. (2015). Morfológia slovenského jazyka. Nitra: UKF.
  40. Welnitzová, K. (2020). Chybovosť v predikatívnosti a kvalita strojového prekladu. Jazyk a Kultúra, 11(41-42), 160-172.
  41. White, J.S. (2003). How to evaluate machine translation. In H. Somers (Ed.), Computers and Translation: A translator's guide, 211-244.
  42. Zehnalová, J., Chromá, M., et al. (Eds.). (2015). Kvalita a hodnocení překladu: Modely a aplikace. Olomouc: Univerzita Palackého v Olomouci.
  43. Zhechev, V. (2014). Analysing the Post-Editing of Machine Translation at Autodesk. In Sh. O’Brien et al. (Eds.), Post-Editing of Machine Translation. Processes and Applications (pp. 2-13). Newcastle upon Tyne: Cambridge Scholars Publishing.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».