ECT DAMAGE INDICATES STM DIVIDED INTO STM CONTROL & LTM TRACES: NEUROLOGICAL DEFINITION OF “CONFUSION”

Cover Page

Cite item

Full Text

Abstract

Recently it was shown that short term memory (STM) free recall consists of two stages: the first few recalls empty working memory and a second stage, a reactivation stage, concludes the recall (Tarnow, 2015; for a review of the theoretical predictions see Murdock, 1974). Bayley et al (2000) investigated free recall in people who had undergone Electroconvulsive therapy (ECT) and found that both recency and primacy effects were normal. Here I investigate this further, and argue that this finding suggests a division of STM between STM Control and long term memory (LTM) traces and that STM Control is not effected by ECT.Serial position probabilities from an investigation of Bayley et al (2000) were used to compare 11 subjects with ECT treatments to a control group and to a group of Alzheimer’s subjects.The free recall probabilities are found to be separable into the serial position curves and the overall probability of recall. This suggests that STM is separable into an STM Control structure (the serial position curve responsible for working memory and reactivation functions) and LTM traces (the overall probability of recall).Using the ECT review of Abbott et al (2014a) showing excess activity in MTL and lacking activity in the frontal lobes I suggest that STM Control is overworked trying to establish stable patterns in LTM. It could be that the confusion resulting from ECT is due to the failure of this process, suggesting a neurological definition of confusion.

About the authors

Eugen Tarnow

Avalon Business Systems, Inc

Email: etarnow@avabiz.com
Ph.D., Data Scientist, Director of Consulting Avalon Business Systems (New York, USA). 18-11 Radburn Road, Fair Lawn, NJ 07410, USA

References

  1. Abbott, C.C., Gallegos, P., Rediske, N., Lemke, N.T., & Quinn, D.K. (2014a). A review of longitudinal electroconvulsive therapy: neuroimaging investigations. Journal of geriatric psychiatry and neurology, 27(1), 33-46. doi: 10.1177/0891988713516542
  2. Abbott, C.C., Jones, T., Lemke, N.T., Gallegos, P., McClintock, S.M., Mayer, A.R., ... & Calhoun, V.D. (2014b). Hippocampal structural and functional changes associated with electroconvulsive therapy response. Translational psychiatry, 4(11), e483. doi: 10.1038/tp.2014.124
  3. Alvarez, P., & Squire, L.R. (1994). Memory consolidation and the medial temporal lobe: a simple network model. Proceedings of the National Academy of Sciences, 91(15), 7041-7045. doi: 10.1073/ pnas.91.15.7041
  4. Bayley, P.J., Salmon, D.P., Bondi, M.W., Bui, B.K., Olichney, J., Delis, D.C., ... & Thal, L.J. (2000). Comparison of the serial position effect in very mild Alzheimer’s disease, mild Alzheimer’s disease, and amnesia associated with electroconvulsive therapy. Journal of the International Neuropsychological Society, 6(03), 290-298. doi: 10.1017/S1355617700633040
  5. Crow, T.J. & Grove-White, I.G. (1973). An analysis of the learning deficit following hyoscine administration to man. British Journal of Pharmacology, 49 (2), 322-327. doi: 10.1111/j.1476-5381.1973.tb08379.x
  6. Dominique, J.F., Roozendaal, B., Nitsch, R.M., McGaugh, J.L., & Hock, C. (2000). Acute cortisone administration impairs retrieval of long-term declarative memory in humans. Nature neuroscience, 3(4), 313-314
  7. Frith, C.D., Richardson, J.T.E., Samuel, M., Crow, T.J., & McKenna, P.J. (1984). The effects of intravenous diazepam and hyoscine upon human memory. The Quarterly Journal of Experimental Psychology, 36(1), 133-144. doi: 10.1080/14640748408401507
  8. Goldman-Rakic, P.S. (1995). Cellular basis of working memory. Neuron, 14(3), 477-485. doi: 10.1016/0896-6273(95)90304-6
  9. Kandel, E.R., Dudai, Y., & Mayford, M.R. (2014). The Molecular and Systems Biology of Memory. Cell, 157(1), 163-186
  10. Kitamura, T., Ogawa, S.K., Roy, D.S., Okuyama, T., Morrissey, M.D., Smith, L.M., ... & Tonegawa, S. (2017). Engrams and circuits crucial for systems consolidation of a memory. Science, 356(6333), 73-78. doi: 10.1126/science.aam6808
  11. Lee, W.H., Lisanby, S.H., Laine, A.F., & Peterchev, A.V. (2014, August). Stimulation strength and focality of electroconvulsive therapy and magnetic seizure therapy in a realistic head model. Engineering in Medicine and Biology Society: Proceeding of 36th Annual International Conference of the IEEE (pp. 410-413). Chicago: IEEE. doi: 10.1109/EMBC.2014.6943615
  12. McClelland, J.L., McNaughton, B.L., & O’reilly, R.C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychological review, 102(3), 419. doi: 10.1037/0033-295X.102.3.419
  13. Murdock, B.B. (1974). Human memory: Theory and data. Lawrence Erlbaum
  14. Rosenbaum, R.S., Gilboa, A., & Moscovitch, M. (2014). Case studies continue to illuminate the cognitive neuroscience of memory. Annals of the New York Academy of Sciences, 1316(1), 105-133
  15. Roy, D.S., Arons, A., Mitchell, T.I., Pignatelli, M., Ryan, T.J., & Tonegawa, S. (2016). Memory retrieval by activating engram cells in mouse models of early Alzheimer’s disease. Nature, 531(7595), 508-512. doi: 10.1038/nature17172
  16. Summers, W.K., Robins, E., & Reich, T. (1979). The natural history of acute organic mental syndrome after bilateral electroconvulsive therapy. Biology Psychiatry, 14(6), 905-912
  17. Talmi, D., Grady, C.L., Goshen-Gottstein, Y., & Moscovitch, M. (2005). Neuroimaging the serial position curve: A test of single-store versus dual-store models. Psychological Science, 16(9), 716- 723
  18. Tarnow, E. (2008). Response probability and response time: a straight line, the Tagging/Retagging interpretation of short term memory, an operational definition of meaningfulness and short term memory time decay and search time. Cognitive neurodynamics, 2(4), 347-353. doi: 10.1007/s11571008-9056-y
  19. Tarnow, E. (2009). Short term memory may be the depletion of the readily releasable pool of presynaptic neurotransmitter vesicles of a metastable long term memory trace pattern. Cognitive neurodynamics, 3(3), 263-269. doi: 10.1007/s11571-009-9085-1
  20. Tarnow, E. (2015) First direct evidence of two stages in free recall and three corresponding estimates of working memory capacity. RUDN Journal of Psychology and Pedagogics, (4), 15-26
  21. Tarnow, E. (2016a) Indirect Evidence: Mild Alzheimer’s Disease & Cannabis Affect the Second State of Free Recall Suggesting Localization in Hippocampal CA1. RUDN Journal of Psychology & Pedagogics, (2), 36-44
  22. Tarnow, E. (2016b). Preliminary Evidence--Diagnosed Alzheimer’s Disease But Not MCI Affects Working Memory Capacity-0.7 of 2.7 Memory Slots is Lost. arXiv preprint arXiv:1603.07759
  23. Teter, B., & Ashford, J. W. (2002). Neuroplasticity in Alzheimer’s disease. Journal of neuroscience research, 70(3), 402-437. doi: 10.1002/jnr.10441

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).