ИНТЕГРАЦИЯ ФРАКТАЛЬНЫХ И НЕЙРОСЕТЕВЫХ ТЕХНОЛОГИЙ В ПЕДАГОГИЧЕСКОМ КОНТРОЛЕ И ОЦЕНКЕ ЗНАНИЙ ОБУЧАЕМЫХ
- Авторы: Дворяткина СН1
-
Учреждения:
- Елецкий государственный университет им. И.А. Бунина
- Выпуск: Том 14, № 4 (2017)
- Страницы: 451-465
- Раздел: Статьи
- URL: https://journal-vniispk.ru/2313-1683/article/view/347547
- DOI: https://doi.org/10.22363/2313-1683-2017-14-4-451-465
- ID: 347547
Цитировать
Полный текст
Аннотация
Постановка и решение проблемы поиска теоретического обоснования и разработки эффективных дидактических механизмов организации процесса педагогического контроля и оценки знаний обучаемых может быть основана на конвергенции ведущих психолого-педагогических, математических и информационных технологий с учетом современных достижений в науке. В статье обоснована педагогическая целесообразность реализации возможностей средств информационных технологий в оценке сложного математического знания, в управлении познавательной деятельностью студентов. Исследована и реализована на практике интеграция фрактальных методов и нейросетевых технологий в совершенствовании системы педагогического контроля математических знаний обучаемых в составе автоматизированных обучающих систем (АОС). Доказано, что фрактальные методы увеличивают точность и глубину оценивания уровня обученности студентов, комплексов интеллектуальных операций и интегративных качеств, позволяющих осваивать и применять междисциплинарные знания и умения в профессиональной деятельности. Нейросетевые технологии решают проблему реализации личностно-ориентированного обучения с позиций оптимальной индивидуализации математического образования и самореализации личности. Технология проектирования интегративной системы педагогического контроля знаний студентов включает следующие этапы: установление требуемых параметров обучения; определение и подготовка исходных данных для реализации интеграции фрактальной и нейросетевой технологий; разработку диагностического модуля в составе блока искусственного интеллекта АОС, заполнение структурированных системой баз данных; запуск системы для получения прогноза. Новым в разработке интегративной автоматизированной системы педагогического контроля знаний является то, что индивидуальная оценка качества обучения студентов осуществляется на основе двух параметров - глубины усвоения понятия, его взаимосвязи с другими понятиями и оценке величины синергетического эффекта интеграции знаний и деятельности обучаемых. Опыт внедрения и эксплуатации автоматизированной системы педагогического контроля и оценки знаний на основе интеграции фрактального моделирования и нейросетевых технологий позволил повысить уровень объективности оценивания знаний обучаемых, качество управления учебным процессом, его результативность в целом.
Об авторах
С Н Дворяткина
Елецкий государственный университет им. И.А. Бунина
Автор, ответственный за переписку.
Email: sobdvor@yelets.lipetsk.ru
Дворяткина Светлана Николаевна - доктор педагогических наук, доцент, профессор кафедры математики и методики ее преподавания Елецкого государственного университета им. И.А. Бунина (Елец, Россия).
Коммунаров ул., 28, Елец, Россия, 399770Список литературы
- Avanesov, V.S. (2015). Аpplication of Educational Technologies and Pedagogical Measurements to Modernization of Education. Pedagogicheskie izmerenia, (1), 3—28. (In Russ.).
- Bolotov, V., Valdman, I., Kovaleva, G., & Pinskaya, M. (2013). Russian Quality Assessment System in Education: Key Lessons. Education Quality in Eurasia, (1), 85—122.
- Dvoryatkina, S.N., & Smirnov, E.I. (2016). Assessment of the Synergetic Effects of Integration of Knowledge and Activity on the Basis of Computer Model Operation. The Modern Informational Technologies and IT Education (pp. 35—42). Moscow: MSU Publ. (In Russ.).
- Dvoryatkina, S., Smirnov, E., & Lopukhin, A. (2017). New Opportunities of Computer Assessment of Knowledge Based on Fractal Modeling. Proceedings of the 3rd international conference on higher education advances, HEAd 17 (pp. 854—864). Valensia: Universitat Politecnica de Valencia. doi: 10.22363/2313-1683-2017-14-4: 10.4995/HEAD17.2017.6713.
- Grushevsky, S.P, Dobrovolskaya, N.Yu., & Koltsov Yu.V. (2008). Organizatsiya uchebnogo protsessa na osnove neyrosetevoy komp’yuternoy obuchayushchey sistemy. The Bulletin of Adyghe State University: Internet Scientific Journal, (7), 142—148. (In Russ.).
- Hebb, D.O. (1949). The Organization of Behavior. New York: Wiley & Sons.
- Hopfield, J.J. (1982). Neural Networks and Physical Systems with Emergent Collective Computational Abilities. Proceedings of National Academy of Sciences, 79(8), 2554—2558.
- Kibzun, A.I., & Inozemtsev, A.O. (2014). Using the Maximum Likelihood Method to Estimate Test Complexity Levels. Automation and Remote Control, (4), 20—37. doi: 10.22363/2313-1683-2017-14-4: 10.1134/S000511791404002X. (In Russ.).
- Kozlov, O.A., Mikhailov, Yu.F., & Vershinina S.V. (2017). Management of Formation of Individual Educational Trajectories with Use of Information Technologies. Scientific notes of the IME RAE, (1—2), 62—64. (In Russ.)
- Kruglov, V.V., & Borisov, V.V. (2002). Iskusstvennye neyronnye seti. Teoriya i praktika. Moscow. 382 p. (In Russ.).
- Latyshev, V.L. (2009). Criteria of Estimation of Quality of Educational Component of Intellectual Teaching Systems. Informatization of Education and Science, (3), 89—96. (In Russ.).
- Monakhov, V.M. (2014). IT-obrazovanie i nekotorye voprosy evolyutsii otechestvennoy metodicheskoy sistemy obucheniya matematike, obespechivayushchie tekhnologizatsiyu uchebnogo protsessa. Modern Information Technologies and IT-education, (10), 100—106. (In Russ.).
- McCalloch, W.S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. V. 5, 115—133.
- Robert, I.V. (2016). Perspective Fundamental Researches in the Field of Informatization of Education. Scientific Notes of the IME RAE, (59), 78—85. (In Russ.).
- Rosenblatt, F. (1962). Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms. Washington, DC: Spartan Books.
- Rudinskiy, I.D., & Davydova N.A. (2014). Perspectives for Automation of Knowledge Control Tests Item Preparation. The Tidings of the Baltic State Fishing Fleet Academy: Psychological and pedagogical sciences, (1), 43—47. (In Russ.).
- Shadrikov, V.D., & Kuznetsova, M.D. (2011). Metodika otsenki urovnya kvalifikatsii pedagogicheskikh kadrov. Metodicheskaya rabota v shkole, (1), 3—33. (In Russ.).
- Uglev, V.A. (2010). On the Specificity of Individualization of Training in Automated Training Systems. Philosophy of Education, (2), 68—74. (In Russ.).
- Usova, A.V. (2007) Proverka i puti povysheniya kachestva znaniy. Chelyabinsk. (In Russ.).
Дополнительные файлы

