Уроки программирования и развития вычислительного мышления школьников в пост-пандемическом образовательном ландшафте: аналитический обзор вызовов и перспектив исследований
- Авторы: Никифорова К.А.1
-
Учреждения:
- Научно-технологический университет «Сириус»
- Выпуск: Том 21, № 3 (2024)
- Страницы: 858-886
- Раздел: ЛИЧНОСТЬ В ЦИФРОВУЮ ЭПОХУ: ВОЗМОЖНОСТИ И РИСКИ
- URL: https://journal-vniispk.ru/2313-1683/article/view/326291
- DOI: https://doi.org/10.22363/2313-1683-2024-21-3-858-886
- EDN: https://elibrary.ru/HBHWQQ
- ID: 326291
Цитировать
Полный текст
Аннотация
Несмотря на быстрый рост технологий и постоянный спрос на IT-специалистов, когнитивные процессы, лежащие в основе вычислительного мышления и способности мозга понимать коды, остаются плохо изученными, особенно у детей младшего возраста. После пандемии Covid-19 школы многих стран включили уроки программирования в свои учебные планы. Программирование тесно связано со сложными когнитивными навыками в области STEM (наука, технологии, инженерия и математика), такими как вычислительное и алгоритмическое мышление. Однако в литературе существует путаница в отношении взаимосвязи между этими формами мышления и другими когнитивными навыками. Цели обзора: проанализировать методологии, используемые когнитивными учеными для изучения эффектов переноса навыков, полученных на уроках программирования, на развитие навыков вычислительного мышления у детей; рассмотреть современные исследования, направленные на изучение проблемы связи занятий программированием и развитием вычислительного мышления. Наши результаты показали, что многим учителям не хватает адекватной подготовки в области программирования и цифровой грамотности, что приводит к низкой компетентности и неуверенности в преподавании этих предметов. Кроме того, отсутствие универсальных платформ и методов обучения усложняет внедрение уроков программирования в начальных школах. Существует также нехватка лонгитюдных исследований (более шести месяцев), которые изучают когнитивные навыки, развиваемые в ходе уроков программирования. Решение этих проблем важно для улучшения образовательных практик.
Ключевые слова
Об авторах
Кристина Андреевна Никифорова
Научно-технологический университет «Сириус»
Автор, ответственный за переписку.
Email: kkrisinger1990@gmail.com
ORCID iD: 0009-0000-4302-4406
аспирант, младший научный сотрудник, Научный центр когнитивных исследований
Российская Федерация, 354340, Краснодарский край, федеральная территория «Сириус», Олимпийский проспект, д. 1Список литературы
- Adamović, M. Đ., & Ivetić, D. V. (2024). Streamlined approach to 2nd/3rd graders learning basic programming concepts. Entertainment Computing, 48, 100604. https://doi.org/10.1016/j.entcom.2023.100604
- Angeli, C. (2022). The effects of scaffolded programming scripts on pre-service teachers’ computational thinking: Developing algorithmic thinking through programming robots. International Journal of Child-Computer Interaction, 31, 100329. https://doi.org/10.1016/j.ijcci.2021.100329
- Arfé, B., Vardanega, T., Montuori, C., & Lavanga, M. (2019). Coding in primary grades boosts children’s executive functions. Frontiers in Psychology, 10, 2713. https://doi.org/10.3389/fpsyg.2019.02713
- Arslanyilmaz, A., & Sullins, J. (2023). Eye-gaze data to measure students’ attention to and comprehension of computational thinking concepts. International Journal of Child-Computer Interaction, 38, 100414. https://doi.org/10.1016/j.ijcci.2021.100414
- Bacelo, A., & Gómez-Chacón, I. M. (2023). Characterising algorithmic thinking: A university study of unplugged activities. Thinking Skills and Creativity, 48, 101284. https://doi.org/10.1016/j.tsc.2023.101284
- Bai, H., Wang, X., & Zhao, L. (2021). Effects of the problem-oriented learning model on middle school students’ computational thinking skills in a python course. Frontiers in Psychology, 12, 771221. https://doi.org/10.3389/fpsyg.2021.771221
- Carvalho, A. R., & Santos, C. (2022). Developing peer mentors’ collaborative and metacognitive skills with a technology-enhanced peer learning program. Computers and Education Open, 3, 100070. https://doi.org/10.1016/j.caeo.2021.100070
- Castelhano, J., Duarte, I. C., Couceiro, R., Medeiros, J., Duraes, J., Afonso, S., Madeira, H., & Castelo-Branco, M. (2022). Software bug detection causes a shift from bottom-up to top-down effective connectivity involving the insula within the error-monitoring network. Frontiers in Human Neuroscience, 16, 788272. https://doi.org/10.3389/fnhum.2022.788272
- Chan, S.-W., Looi, C.-K., Ho, W. K., Huang, W., Seow, P., & Wu, L. (2021). Learning number patterns through computational thinking activities: A Rasch model analysis. Heliyon, 7(9), e07922. https://doi.org/10.1016/j.heliyon.2021.e07922
- Chen, P., Yang, D., Metwally, A. H. S., Lavonen, J., & Wang, X. (2023). Fostering computational thinking through unplugged activities: A systematic literature review and meta-analysis. International Journal of STEM Education, 10(1), 47. https://doi.org/10.1186/s40594-023-00434-7
- Cheng, Y.-P., Lai, C.-F., Chen, Y.-T., Wang, W.-S., Huang, Y.-M., & Wu, T.-T. (2023). Enhancing student’s computational thinking skills with student-generated questions strategy in a game-based learning platform. Computers & Education, 200, 104794. https://doi.org/10.1016/j.compedu.2023.104794
- Davis, D. K., & Zhu, F. (2022). Analysis of software developers’ coding behavior: A survey of visualization analysis techniques using eye trackers. Computers in Human Behavior Reports, 7, 100213. https://doi.org/10.1016/j.chbr.2022.100213
- Del Olmo-Muñoz, J., Cózar-Gutiérrez, R., & González-Calero, J.A. (2020). Computational thinking through unplugged activities in early years of Primary Education. Computers & Education, 150, 103832. https://doi.org/10.1016/j.compedu.2020.103832
- Dúo-Terrón, P. (2023). Analysis of scratch software in scientific production for 20 years: Programming in education to develop computational thinking and STEAM disciplines. Education Sciences, 13(4), 404. https://doi.org/10.3390/educsci13040404
- El-Hamamsy, L., Bruno, B., Audrin, C., Chevalier, M., Avry, S., Zufferey, J. D., & Mondada, F. (2023). How are primary school computer science curricular reforms contributing to equity? Impact on student learning, perception of the discipline, and gender gaps. International Journal of STEM Education, 10(1), 60. https://doi.org/10.1186/s40594-023-00438-3
- Erümit, A. K., & Sahin, G. (2020). Plugged or unplugged teaching: A case study of students’ preferences in the teaching of programming. International Journal of Computer Science Education in Schools, 4(1), 3-32. https://doi.org/10.21585/ijcses.v4i1.82
- Gerosa, A., Koleszar, V., Tejera, G., Gómez-Sena, L., & Carboni, A. (2021). Cognitive abilities and computational thinking at age 5: Evidence for associations to sequencing and symbolic number comparison. Computers and Education Open, 2, 100043. https://doi.org/10.1016/j.caeo.2021.100043
- Grout, V., & Houlden, N. (2014). Taking Computer Science and Programming into Schools: The Glyndŵr/BCS Turing Project. Procedia - Social and Behavioral Sciences, 141, 680-685. https://doi.org/10.1016/j.sbspro.2014.05.119
- Harper, F. K., Caudle, L. A., Flowers, C. E., Rainwater, T., & Quinn, M. F. (2023). Centering teacher and parent voice to realize culturally relevant computational thinking in early childhood. Early Childhood Research Quarterly, 64, 381-393. https://doi.org/10.1016/j.ecresq.2023.05.001
- Harsch, R. M., & Kendeou, P. (2023). Learning from refutation texts about scientific topics with analogical and causal explanations. Contemporary Educational Psychology, 73, 102172. https://doi.org/10.1016/j.cedpsych.2023.102172
- Heim, G., & Wang, O. J. (2023). Block and unplugged programming can be mutually beneficial: A study of learning activities in a 6th grade class in Norway. Frontiers in Education, 8, 1138285. https://doi.org/10.3389/feduc.2023.1138285
- Jarodzka, H., Skuballa, I., & Gruber, H. (2021). Eye-tracking in educational practice: Investigating visual perception underlying teaching and learning in the classroom. Educational Psychology Review, 33(1), 1-10. https://doi.org/10.1007/s10648-020-09565-7
- Kirçali, A. Ç., & Özdener, N. (2023). A comparison of plugged and unplugged tools in teaching algorithms at the K-12 level for computational thinking skills. Technology, Knowledge and Learning, 28(4), 1485-1513. https://doi.org/10.1007/s10758-021-09585-4
- Koh, J. H. L., & Daniel, B. K. (2022). Shifting online during COVID-19: A systematic review of teaching and learning strategies and their outcomes. International Journal of Educational Technology in Higher Education, 19(1), 56. https://doi.org/10.1186/s41239-022-00361-7
- Kong, S.-C., Lai, M., & Li, Y. (2023). Scaling up a teacher development programme for sustainable computational thinking education: TPACK surveys, concept tests and primary school visits. Computers & Education, 194, 104707. https://doi.org/10.1016/j.compedu.2022.104707
- McCray, J. S., & Chen, J.-Q. (2012). Pedagogical content knowledge for preschool mathematics: Construct validity of a new teacher interview. Journal of Research in Childhood Education, 26(3), 291-307. https://doi.org/10.1080/02568543.2012.685123
- Mousa, M., & Molnár, G. (2020). Computer-based training in math improves inductive reasoning of 9- to 11-year-old children. Thinking Skills and Creativity, 37, 100687. https://doi.org/10.1016/j.tsc.2020.100687
- OECD. (2024). PISA 2024 Science Strategic Vision Proposal [PDF]. Retrieved from https://www.oecd.org/pisa/publications/PISA-2024-Science-Strategic-Vision-Proposal.pdf
- Panikratova, Y. R., Vlasova, R. M., Akhutina, T. V., Korneev, A. A., Sinitsyn, V. E., & Pechenkova, E. V. (2020). Functional connectivity of the dorsolateral prefrontal cortex contributes to different components of executive functions. International Journal of Psychophysiology, 151, 70-79. https://doi.org/10.1016/j.ijpsycho.2020.02.013
- Papavlasopoulou, S., Sharma, K., & Giannakos, M. N. (2018). How do you feel about learning to code? Investigating the effect of children’s attitudes towards coding using eye-tracking. International Journal of Child-Computer Interaction, 17, 50-60. https://doi.org/10.1016/j.ijcci.2018.01.004
- Pérez-Marín, D., Hijón-Neira, R., Bacelo, A., & Pizarro, C. (2020). Can computational thinking be improved by using a methodology based on metaphors and scratch to teach computer programming to children? Computers in Human Behavior, 105, 105849. https://doi.org/10.1016/j.chb.2018.12.027
- Ramful, A., Lowrie, T., & Logan, T. (2017). Measurement of spatial ability: Construction and validation of the spatial reasoning instrument for middle school students. Educational Psychology, 37(2), 193-211. https://doi.org/10.1080/01443410.2016.1148776
- Relkin, E., de Ruiter, L. E., & Bers, M. U. (2021). Learning to code and the acquisition of computational thinking by young children. Computers & Education, 169, 104222. https://doi.org/10.1016/j.compedu.2021.104222
- Robledo-Castro, C., Castillo-Ossa, L. F., & Hederich-Martínez, C. (2023). Effects of a compu-tational thinking intervention program on executive functions in children aged 10 to 11. International Journal of Child-Computer Interaction, 35, 100563. https://doi.org/10.1016/j.ijcci.2022.100563
- Román-González, M., Pérez-González, J.-C., & Jiménez-Fernández, C. (2017). Which cognitive abilities underlie computational thinking? Criterion validity of the Computational Thinking Test. Computers in Human Behavior, 72, 678-691. https://doi.org/10.1016/j.chb.2016.08.047
- Scherer, R., Siddiq, F., & Sánchez-Scherer, B. (2021). Some evidence on the cognitive benefits of learning to code. Frontiers in Psychology, 12, 559424. https://doi.org/10.3389/fpsyg.2021.559424
- Sim, G., & Bond, R. (2021). Eye tracking in Child Computer Interaction: Challenges and opportunities. International Journal of Child-Computer Interaction, 30, 100345. https://doi.org/10.1016/j.ijcci.2021.100345
- Sun, L., Hu, L., & Zhou, D. (2021). Improving 7th-graders’ computational thinking skills through unplugged programming activities: A study on the influence of multiple factors. Thinking Skills and Creativity, 42, 100926. https://doi.org/10.1016/j.tsc.2021.100926
- Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing computational thinking: A systematic review of empirical studies. Computers & Education, 148, 103798. https://doi.org/10.1016/j.compedu.2019.103798
- Theodoropoulos, A., & Lepouras, G. (2022). Game design, gender and personalities in programming education. Frontiers in Computer Science, 4, 824995. https://doi.org/10.3389/fcomp.2022.824995
- Thompson, J., & Childers, G. (2021). The impact of learning to code on elementary students’ writing skills. Computers & Education, 175, 104336. https://doi.org/10.1016/j.compedu.2021.104336
- Tran, Y. (2018). Computational thinking equity in elementary classrooms: What third-grade students know and can do. Journal of Educational Computing Research, 57(1), 3-31. https://doi.org/10.1177/0735633117743918
- Zeng, Y., Yang, W., & Bautista, A. (2023). Teaching programming and computational thinking in early childhood education: a case study of content knowledge and pedagogical knowledge. Frontiers in Psychology, 14, 1252718. https://doi.org/10.3389/fpsyg.2023.1252718
- Zhan, Z., He, L., Tong, Y., Liang, X., Guo, S., & Lan, X. (2022). The effectiveness of gamification in programming education: Evidence from a meta-analysis. Computers and Education: Artificial Intelligence, 3, 100096. https://doi.org/10.1016/j.caeai.2022.100096
- Zhao, L., Liu, X., Wang, C., & Su, Y.-S. (2022). Effect of different mind mapping approaches on primary school students’ computational thinking skills during visual programming learning. Computers & Education, 181, 104445. https://doi.org/10.1016/j.compedu.2022.104445
Дополнительные файлы
