Coding Lessons and the Development of Computational Thinking in Schoolchildren in the Post-Pandemic Educational Landscape: A Review on Research Challenges and Perspectives


Cite item

Full Text

Abstract

Despite the rapid growth of technology and the constant demand for IT specialists, the cognitive processes underlying computational thinking and the brain’s ability to understand code remain poorly understood, especially in younger children. Following the Covid-19 pandemic, many countries have included coding lessons into their curricula. Coding is closely linked to complex cognitive skills in STEM (science, technology, engineering, and mathematics), such as computational and algorithmic thinking. However, confusion persists regarding the relationship between these forms of thinking and other cognitive skills. This review has two objectives: first, to investigate the methodologies used by cognitive scientists in studying the transfer effects of coding lessons on children’s computational thinking skills; and, second, to examine contemporary research related to coding lessons and computational thinking. Our findings indicate that many teachers lack adequate training in coding and digital literacy, resulting in low competence and confidence in teaching these subjects. In addition, the absence of universal teaching platforms and methods complicates the implementation of coding lessons in primary schools. Finally, there is also a general shortage of longitudinal studies (over six months) focusing on the cognitive skills developed through coding lessons. Addressing these issues is essential for improving educational practices in coding and computational thinking.

About the authors

Kristina A. Nikiforova

Sirius University of Science and Technology

Author for correspondence.
Email: kkrisinger1990@gmail.com
ORCID iD: 0009-0000-4302-4406

Postgraduate Student, Junior Researcher, Scientific Center for Cognitive Research

1 Olimpiyskiy Ave., Sirius, 354340, Krasnodar Region, Russian federation

References

  1. Adamović, M. Đ., & Ivetić, D. V. (2024). Streamlined approach to 2nd/3rd graders learning basic programming concepts. Entertainment Computing, 48, 100604. https://doi.org/10.1016/j.entcom.2023.100604
  2. Angeli, C. (2022). The effects of scaffolded programming scripts on pre-service teachers’ computational thinking: Developing algorithmic thinking through programming robots. International Journal of Child-Computer Interaction, 31, 100329. https://doi.org/10.1016/j.ijcci.2021.100329
  3. Arfé, B., Vardanega, T., Montuori, C., & Lavanga, M. (2019). Coding in primary grades boosts children’s executive functions. Frontiers in Psychology, 10, 2713. https://doi.org/10.3389/fpsyg.2019.02713
  4. Arslanyilmaz, A., & Sullins, J. (2023). Eye-gaze data to measure students’ attention to and comprehension of computational thinking concepts. International Journal of Child-Computer Interaction, 38, 100414. https://doi.org/10.1016/j.ijcci.2021.100414
  5. Bacelo, A., & Gómez-Chacón, I. M. (2023). Characterising algorithmic thinking: A university study of unplugged activities. Thinking Skills and Creativity, 48, 101284. https://doi.org/10.1016/j.tsc.2023.101284
  6. Bai, H., Wang, X., & Zhao, L. (2021). Effects of the problem-oriented learning model on middle school students’ computational thinking skills in a python course. Frontiers in Psychology, 12, 771221. https://doi.org/10.3389/fpsyg.2021.771221
  7. Carvalho, A. R., & Santos, C. (2022). Developing peer mentors’ collaborative and metacognitive skills with a technology-enhanced peer learning program. Computers and Education Open, 3, 100070. https://doi.org/10.1016/j.caeo.2021.100070
  8. Castelhano, J., Duarte, I. C., Couceiro, R., Medeiros, J., Duraes, J., Afonso, S., Madeira, H., & Castelo-Branco, M. (2022). Software bug detection causes a shift from bottom-up to top-down effective connectivity involving the insula within the error-monitoring network. Frontiers in Human Neuroscience, 16, 788272. https://doi.org/10.3389/fnhum.2022.788272
  9. Chan, S.-W., Looi, C.-K., Ho, W. K., Huang, W., Seow, P., & Wu, L. (2021). Learning number patterns through computational thinking activities: A Rasch model analysis. Heliyon, 7(9), e07922. https://doi.org/10.1016/j.heliyon.2021.e07922
  10. Chen, P., Yang, D., Metwally, A. H. S., Lavonen, J., & Wang, X. (2023). Fostering computational thinking through unplugged activities: A systematic literature review and meta-analysis. International Journal of STEM Education, 10(1), 47. https://doi.org/10.1186/s40594-023-00434-7
  11. Cheng, Y.-P., Lai, C.-F., Chen, Y.-T., Wang, W.-S., Huang, Y.-M., & Wu, T.-T. (2023). Enhancing student’s computational thinking skills with student-generated questions strategy in a game-based learning platform. Computers & Education, 200, 104794. https://doi.org/10.1016/j.compedu.2023.104794
  12. Davis, D. K., & Zhu, F. (2022). Analysis of software developers’ coding behavior: A survey of visualization analysis techniques using eye trackers. Computers in Human Behavior Reports, 7, 100213. https://doi.org/10.1016/j.chbr.2022.100213
  13. Del Olmo-Muñoz, J., Cózar-Gutiérrez, R., & González-Calero, J.A. (2020). Computational thinking through unplugged activities in early years of Primary Education. Computers & Education, 150, 103832. https://doi.org/10.1016/j.compedu.2020.103832
  14. Dúo-Terrón, P. (2023). Analysis of scratch software in scientific production for 20 years: Programming in education to develop computational thinking and STEAM disciplines. Education Sciences, 13(4), 404. https://doi.org/10.3390/educsci13040404
  15. El-Hamamsy, L., Bruno, B., Audrin, C., Chevalier, M., Avry, S., Zufferey, J. D., & Mondada, F. (2023). How are primary school computer science curricular reforms contributing to equity? Impact on student learning, perception of the discipline, and gender gaps. International Journal of STEM Education, 10(1), 60. https://doi.org/10.1186/s40594-023-00438-3
  16. Erümit, A. K., & Sahin, G. (2020). Plugged or unplugged teaching: A case study of students’ preferences in the teaching of programming. International Journal of Computer Science Education in Schools, 4(1), 3-32. https://doi.org/10.21585/ijcses.v4i1.82
  17. Gerosa, A., Koleszar, V., Tejera, G., Gómez-Sena, L., & Carboni, A. (2021). Cognitive abilities and computational thinking at age 5: Evidence for associations to sequencing and symbolic number comparison. Computers and Education Open, 2, 100043. https://doi.org/10.1016/j.caeo.2021.100043
  18. Grout, V., & Houlden, N. (2014). Taking Computer Science and Programming into Schools: The Glyndŵr/BCS Turing Project. Procedia - Social and Behavioral Sciences, 141, 680-685. https://doi.org/10.1016/j.sbspro.2014.05.119
  19. Harper, F. K., Caudle, L. A., Flowers, C. E., Rainwater, T., & Quinn, M. F. (2023). Centering teacher and parent voice to realize culturally relevant computational thinking in early childhood. Early Childhood Research Quarterly, 64, 381-393. https://doi.org/10.1016/j.ecresq.2023.05.001
  20. Harsch, R. M., & Kendeou, P. (2023). Learning from refutation texts about scientific topics with analogical and causal explanations. Contemporary Educational Psychology, 73, 102172. https://doi.org/10.1016/j.cedpsych.2023.102172
  21. Heim, G., & Wang, O. J. (2023). Block and unplugged programming can be mutually beneficial: A study of learning activities in a 6th grade class in Norway. Frontiers in Education, 8, 1138285. https://doi.org/10.3389/feduc.2023.1138285
  22. Jarodzka, H., Skuballa, I., & Gruber, H. (2021). Eye-tracking in educational practice: Investigating visual perception underlying teaching and learning in the classroom. Educational Psychology Review, 33(1), 1-10. https://doi.org/10.1007/s10648-020-09565-7
  23. Kirçali, A. Ç., & Özdener, N. (2023). A comparison of plugged and unplugged tools in teaching algorithms at the K-12 level for computational thinking skills. Technology, Knowledge and Learning, 28(4), 1485-1513. https://doi.org/10.1007/s10758-021-09585-4
  24. Koh, J. H. L., & Daniel, B. K. (2022). Shifting online during COVID-19: A systematic review of teaching and learning strategies and their outcomes. International Journal of Educational Technology in Higher Education, 19(1), 56. https://doi.org/10.1186/s41239-022-00361-7
  25. Kong, S.-C., Lai, M., & Li, Y. (2023). Scaling up a teacher development programme for sustainable computational thinking education: TPACK surveys, concept tests and primary school visits. Computers & Education, 194, 104707. https://doi.org/10.1016/j.compedu.2022.104707
  26. McCray, J. S., & Chen, J.-Q. (2012). Pedagogical content knowledge for preschool mathematics: Construct validity of a new teacher interview. Journal of Research in Childhood Education, 26(3), 291-307. https://doi.org/10.1080/02568543.2012.685123
  27. Mousa, M., & Molnár, G. (2020). Computer-based training in math improves inductive reasoning of 9- to 11-year-old children. Thinking Skills and Creativity, 37, 100687. https://doi.org/10.1016/j.tsc.2020.100687
  28. OECD. (2024). PISA 2024 Science Strategic Vision Proposal [PDF]. Retrieved from https://www.oecd.org/pisa/publications/PISA-2024-Science-Strategic-Vision-Proposal.pdf
  29. Panikratova, Y. R., Vlasova, R. M., Akhutina, T. V., Korneev, A. A., Sinitsyn, V. E., & Pechenkova, E. V. (2020). Functional connectivity of the dorsolateral prefrontal cortex contributes to different components of executive functions. International Journal of Psychophysiology, 151, 70-79. https://doi.org/10.1016/j.ijpsycho.2020.02.013
  30. Papavlasopoulou, S., Sharma, K., & Giannakos, M. N. (2018). How do you feel about learning to code? Investigating the effect of children’s attitudes towards coding using eye-tracking. International Journal of Child-Computer Interaction, 17, 50-60. https://doi.org/10.1016/j.ijcci.2018.01.004
  31. Pérez-Marín, D., Hijón-Neira, R., Bacelo, A., & Pizarro, C. (2020). Can computational thinking be improved by using a methodology based on metaphors and scratch to teach computer programming to children? Computers in Human Behavior, 105, 105849. https://doi.org/10.1016/j.chb.2018.12.027
  32. Ramful, A., Lowrie, T., & Logan, T. (2017). Measurement of spatial ability: Construction and validation of the spatial reasoning instrument for middle school students. Educational Psychology, 37(2), 193-211. https://doi.org/10.1080/01443410.2016.1148776
  33. Relkin, E., de Ruiter, L. E., & Bers, M. U. (2021). Learning to code and the acquisition of computational thinking by young children. Computers & Education, 169, 104222. https://doi.org/10.1016/j.compedu.2021.104222
  34. Robledo-Castro, C., Castillo-Ossa, L. F., & Hederich-Martínez, C. (2023). Effects of a compu-tational thinking intervention program on executive functions in children aged 10 to 11. International Journal of Child-Computer Interaction, 35, 100563. https://doi.org/10.1016/j.ijcci.2022.100563
  35. Román-González, M., Pérez-González, J.-C., & Jiménez-Fernández, C. (2017). Which cognitive abilities underlie computational thinking? Criterion validity of the Computational Thinking Test. Computers in Human Behavior, 72, 678-691. https://doi.org/10.1016/j.chb.2016.08.047
  36. Scherer, R., Siddiq, F., & Sánchez-Scherer, B. (2021). Some evidence on the cognitive benefits of learning to code. Frontiers in Psychology, 12, 559424. https://doi.org/10.3389/fpsyg.2021.559424
  37. Sim, G., & Bond, R. (2021). Eye tracking in Child Computer Interaction: Challenges and opportunities. International Journal of Child-Computer Interaction, 30, 100345. https://doi.org/10.1016/j.ijcci.2021.100345
  38. Sun, L., Hu, L., & Zhou, D. (2021). Improving 7th-graders’ computational thinking skills through unplugged programming activities: A study on the influence of multiple factors. Thinking Skills and Creativity, 42, 100926. https://doi.org/10.1016/j.tsc.2021.100926
  39. Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing computational thinking: A systematic review of empirical studies. Computers & Education, 148, 103798. https://doi.org/10.1016/j.compedu.2019.103798
  40. Theodoropoulos, A., & Lepouras, G. (2022). Game design, gender and personalities in programming education. Frontiers in Computer Science, 4, 824995. https://doi.org/10.3389/fcomp.2022.824995
  41. Thompson, J., & Childers, G. (2021). The impact of learning to code on elementary students’ writing skills. Computers & Education, 175, 104336. https://doi.org/10.1016/j.compedu.2021.104336
  42. Tran, Y. (2018). Computational thinking equity in elementary classrooms: What third-grade students know and can do. Journal of Educational Computing Research, 57(1), 3-31. https://doi.org/10.1177/0735633117743918
  43. Zeng, Y., Yang, W., & Bautista, A. (2023). Teaching programming and computational thinking in early childhood education: a case study of content knowledge and pedagogical knowledge. Frontiers in Psychology, 14, 1252718. https://doi.org/10.3389/fpsyg.2023.1252718
  44. Zhan, Z., He, L., Tong, Y., Liang, X., Guo, S., & Lan, X. (2022). The effectiveness of gamification in programming education: Evidence from a meta-analysis. Computers and Education: Artificial Intelligence, 3, 100096. https://doi.org/10.1016/j.caeai.2022.100096
  45. Zhao, L., Liu, X., Wang, C., & Su, Y.-S. (2022). Effect of different mind mapping approaches on primary school students’ computational thinking skills during visual programming learning. Computers & Education, 181, 104445. https://doi.org/10.1016/j.compedu.2022.104445

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».