Artificial intelligence technologies, in-person and online learning in higher education: A review of the impact on perceptual features, psychological climate and academic performance

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

Rapid digitalization of higher education and the rise of artificial intelligence (AI) in instruction call for careful evaluation of their impact on students. Traditional face-to-face lectures and those given by an AI-avatar, remote online courses, each create distinct conditions that shape the classroom psychological climate and comfort. Prior research shows AI integration increases engagement, but comparative evidence on comfort, performance, and perception across formats remains limited. The purpose of this review is to examine students’ perceptions of three instructional formats (in-person, online, AI-avatar lectures), their impact on class psychological climate and academic performance, and the risks and prospects of AI use in higher education. This narrative review synthesizes literature on AI applications in higher education over approximately the past seven years, drawing on Russian (RSCI, eLIBRARY) and international (Scopus, Web of Science) databases, as well as relevant reports and surveys. Empirical studies (2018–2025, Russian/English) comparing pedagogical formats or assessing AI’s impact on students were included, while incomplete reports, duplicates, and irrelevant works were excluded. Review findings indicate that most students rated face-to-face instruction as most comfortable, though well-designed online courses and realistic avatar lectures yielded comparable satisfaction. No single format was universally superior; instructional effectiveness depended on contextual factors. Online learning outcomes varied; in some cases they equaled or exceeded in-person results. Early studies of AI-avatar lectures showed neutral-to-positive reception, noting clear speech and accessibility. The presence of a virtual instructor positively influenced satisfaction, and visual feedback proved more effective than text-only interaction. Students’ digital literacy facilitated adaptation, while skill gaps or low trust contributed to anxiety. Risks included reduced live communication, limited avatar authenticity, academic dishonesty, and ethical concerns. Overall, AI-avatars and digital technologies can enhance interactivity and flexibility in higher education but cannot fully replace live human contact. Therefore, a balanced, human-centered implementation that accounts for psychological factors is recommended.

Авторлар туралы

Olga Ulyanina

Moscow State University of Psychology & Education; Moscow Institute of Physics and Technology (National Research University)

Хат алмасуға жауапты Автор.
Email: ulyaninaoa@mgppu.ru
ORCID iD: 0000-0001-9300-4825
SPIN-код: 9283-7824
Scopus Author ID: 57207950411
ResearcherId: AAF-2050-2020

Doctor of Psychology, Associate Professor, Head of the Federal Coordination Center for the Development of Psychological and Pedagogical Assistance in the Education System of the Russian Federation, Moscow State University of Psychology & Education; Chief Research Fellow of the Center for Applied Linguistic Research and Testing “ISTOK”, Moscow Institute of Physics and Technology

29 Sretenka St, Moscow, 127051, Russian Federation; 9/3 Institutsky lane, Dolgoprudny, 141701, Russian Federation

Ekaterina Vikhrova

Moscow Institute of Physics and Technology (National Research University)

Email: vikhrova.en@mipt.ru
ORCID iD: 0009-0006-9233-8894
ResearcherId: MTF-7487-2025

Ph.D. in Philology, Associate Professor, Associate Professor of the Department of Foreign Languages

9/3 Institutsky lane, Dolgoprudny, 141701, Russian Federation

Әдебиет тізімі

  1. Adnan, M., & Anwar, K. (2020). Online learning amid the COVID-19 pandemic: Students perspectives. Journal of Pedagogical Sociology and Psychology, 2(1), 45–51. https://doi.org/10.33902/jpsp.2020261309
  2. Alarifi, B.N., & Song, S. (2024). Online vs in-person learning in higher education: effects on student achievement and recommendations for leadership. Humanities and Social Sciences Communications, 11(1), 86. https://doi.org/10.1057/s41599-023-02590-1
  3. Allen, I.E., & Seaman, J. (2017). Digital learning compass: Distance education enrollment report 2017. Wellesley, MA: Babson Survey Research Group.
  4. Almazova, N., Krylova, E., Rubtsova, A., & Odinokaya, M. (2020). Challenges and opportunities for russian higher education amid COVID-19: Teachers’ perspective. Education Sciences, 10(12), 368. https://doi.org/10.3390/educsci10120368
  5. Apoki, U.C., Hussein, A.M.A., Al-Chalabi, H.K.M., Badica, C., & Mocanu, M.L. (2022). The role of pedagogical agents in personalised adaptive learning: A review. Sustainability, 14(11), 6442. https://doi.org/10.3390/su14116442
  6. Audet, É.C., Levine, S.L., Metin, E., Koestner, S., & Barcan, S. (2021). Zooming their way through university: Which Big 5 traits facilitated students’ adjustment to online courses during the COVID-19 pandemic. Personality and Individual Differences, 180, 110969. https://doi.org/10.1016/j.paid.2021.110969
  7. Bailenson, J.N. (2021). Nonverbal overload: A theoretical argument for the causes of Zoom fatigue. Technology, Mind, and Behavior, 2(1). https://doi.org/10.1037/tmb0000030
  8. Balkaya, S., & Akkucuk, U. (2021). Adoption and use of learning management systems in education: The role of playfulness and self-management. Sustainability, 13(3), 1127. https://doi.org/10.3390/su13031127
  9. Bao, W. (2020). COVID-19 and online teaching in higher education: A case study of Peking University. Human Behavior and Emerging Technologies, 2(2), 113–115. https:// doi.org/10.1002/hbe2.191
  10. Baticulon, R.E., Sy, J.J., Alberto, N.R.I., Baron, M.B.C., Mabulay, R.E.C., Rizada, L.G.T., Tiu, C.J.S., Clarion, C.A., & Reyes, J.C.B. (2021). Barriers to online learning in the time of COVID-19: A national survey of medical students in the Philippines. Medical Science Educator, 31(2), 615–626. https://doi.org/10.1007/s40670-021-01231-z
  11. Bernard, R.M., Abrami, P.C., Borokhovski, E., Wade, C.A., Tamim, R.M., Surkes, M.A., & Bethel, E.C. (2009). A meta-analysis of three types of interaction treatments in distance education. Review of Educational Research, 79(3), 1243–1289. https:// doi.org/10.3102/0034654309333844
  12. Bernard, R.M., Abrami, P.C., Lou, Y., Borokhovski, E., Wade, A., Wozney, L., Wallet, P.A., Fiset, M., & Huang, B. (2004). How does distance education compare with classroom instruction? A meta-analysis of the empirical literature. Review of Educational Research, 74(3), 379–439. https://doi.org/10.3102/00346543074003379
  13. Bernard, R.M., Borokhovski, E., Schmid, R.F., Tamim, R.M., & Abrami, P.C. (2014). A meta-analysis of blended learning and technology use in higher education: From the general to the applied. Journal of Computing in Higher Education, 26(1), 87–122. https:// doi.org/10.1007/s12528-013-9077-3
  14. Besser, A., Flett, G.L., & Zeigler-Hill, V. (2022). Adaptability to a sudden transition to online learning during the COVID-19 pandemic: Understanding the challenges for students. Scholarship of Teaching and Learning in Psychology, 8(2), 85–105. https:// doi.org/10.1037/stl0000198
  15. Bond, M., Bedenlier, S., Marín, V.I., & Händel, M. (2021). Emergency remote teaching in higher education: Mapping the first global online semester. International Journal of Educational Technology in Higher Education, 18(1), 50. https://doi.org/10.1186/s41239-021-00282-x
  16. Bondarenko, N.V., Varlamova, T.A., Gokhberg, L.M., Zorina, O.A., Kuznetsova, V.I., Ozerova, O.K., Portnyagina, O.N., Shkaleva, E.V., & Schugal, N.B. (2025). Indicators of Education in the Russian Federation: 2025: Data Book. Moscow: HSE University. (In Russ.) https://doi.org/10.17323/978-5-7598-3030-6
  17. Bono, R., Núñez-Peña, M.I., Campos-Rodríguez, C., González-Gómez, B., & Quera, V. (2024). Sudden transition to online learning: Exploring the relationships among measures of student experience. International Journal of Educational Research Open, 6, 100332. https://doi.org/10.1016/j.ijedro.2024.100332
  18. Broadbent, J. (2017). Comparing online and blended learner’s self-regulated learning strategies and academic performance. The Internet and Higher Education, 33, 24–32. https:// doi.org/10.1016/j.iheduc.2017.01.004
  19. Broadbent, J., & Poon, W.L. (2015). Self-regulated learning strategies & academic achievement in online higher education learning environments: A systematic review. The Internet and Higher Education, 27, 1–13. https://doi.org/10.1016/j.iheduc.2015.04.007
  20. Clark, R.C., & Mayer, R.E. (Eds.). (2016). e-Learning and the science of instruction: Proven guidelines for consumers and designers of multimedia learning. Hoboken, NJ: John Wiley & Sons, Inc. https://doi.org/10.1002/9781119239086
  21. Coman, C., Țîru, L.G., Meseșan-Schmitz, L., Stanciu, C., & Bularca, M.C. (2020). Online teaching and learning in higher education during the coronavirus pandemic: Students’ perspective. Sustainability, 12(24), 10367. https://doi.org/10.3390/su122410367
  22. Dhawan, S. (2020). Online learning: A panacea in the time of COVID-19 crisis. Journal of Educational Technology Systems, 49(1), 5–22. https://doi.org/10.1177/0047239520934018
  23. Ferri, F., Grifoni, P., & Guzzo, T. (2020). Online learning and emergency remote teaching: Opportunities and challenges in emergency situations. Societies, 10(4), 86. https:// doi.org/10.3390/soc10040086
  24. Fu, P., Gao, C., Chen, X., Zhang, Z., Chen, J., & Yang, D. (2024). Proactive personality and its impact on online learning engagement through positive emotions and learning motivation. Scientific Reports, 14(1), 28144. https://doi.org/10.1038/s41598-024-79776-3
  25. Garris, C.P., & Fleck, B. (2022). Student evaluations of transitioned-online courses during the COVID-19 pandemic. Scholarship of Teaching and Learning in Psychology, 8(2), 119–139. https://doi.org/10.1037/stl0000229
  26. Garrison, D.R. (2011). E-Learning in the 21st century: A framework for research and practice (2nd ed.). New York: Routledge. https://doi.org/10.4324/9780203838761
  27. Garrison, D.R., Anderson, T., & Archer, W. (1999). Critical inquiry in a text-based environment: Computer conferencing in higher education. The Internet and Higher Education, 2(2–3), 87–105. https://doi.org/10.1016/s1096-7516(00)00016-6
  28. Hodges, C.B., Moore, S., Lockee, B.B., Trust, T., & Bond, M.A. (2024). The difference between emergency remote teaching and online learning. In T. Martindale, T.B. Amankwatia, L. Cifuentes & A.A. Piña (Eds.), Handbook of research in online learning (pp. 511–522). Leiden: Brill. https://doi.org/10.1163/9789004702813_021
  29. Holmes, W., Porayska-Pomsta, K., Holstein, K., Sutherland, E., Baker, T., Shum, S.B., Santos, O.C., Rodrigo, M.T., Cukurova, M., Bittencourt, I.I., & Koedinger, K.R. (2022). Ethics of AI in education: Towards a community-wide framework. International Journal of Artificial Intelligence in Education, 32(3), 504–526. https://doi.org/10.1007/s40593-021-00239-1
  30. Kizilcec, R.F., Pérez-Sanagustín, M., & Maldonado, J.J. (2017). Self-regulated learning strategies predict learner behavior and goal attainment in Massive Open Online Courses. Computers & Education, 104, 18–33. https://doi.org/10.1016/j.compedu.2016.10.001
  31. Kostikova, L.P., Yesenina, N.Ye., & Olkov, A.S. (2025). Artificial intelligence in the educational environment of the modern university: the results of the student survey. Scientific-Methodological Electronic Journal “Koncept”, (2), 93–109. (In Russ.) https:// doi.org/10.24412/2304-120X-2025-11022
  32. Lancaster, T., & Cotarlan, C. (2021). Contract cheating by STEM students through a file sharing website: A Covid-19 pandemic perspective. International Journal for Educational Integrity, 17(1), 3. https://doi.org/10.1007/s40979-021-00070-0
  33. Lowenthal, P.R., & Snelson, C. (2017). In search of a better understanding of social presence: An investigation into how researchers define social presence. Distance Education, 38(2), 141–159. https://doi.org/10.1080/01587919.2017.1324727
  34. Marinova, M.M. (2022). The influence of the VR environment on the level of anxiety. Experimental Psychology (Russia), 15(2), 49–58. (In Russ.) https://doi.org/10.17759/exppsy.2022150204
  35. Mayer, R.E. (2020). Multimedia Learning (3rd ed.). Cambridge: Cambridge University Press. https://doi.org/10.1017/9781316941355
  36. Means, B., Toyama, Y., Murphy, R., Baki, M., & Jones, K. (2010). Evaluation of Evidence-Based Practices in Online Learning: A Meta-Analysis and Review of Online Learning Studies. Washington, DC: US Department of Education.
  37. Means, B., Toyama, Y., Murphy, R., & Baki, M. (2013). The effectiveness of online and blended learning: A meta-analysis of the empirical literature. Teachers College Record: The Voice of Scholarship in Education, 115(3), 1–47. https://doi.org/10.1177/016146811311500307
  38. Mishra, L., Gupta, T., & Shree, A. (2020). Online teaching-learning in higher education during lockdown period of COVID-19 pandemic. International Journal of Educational Research Open, 1, 100012. https://doi.org/10.1016/j.ijedro.2020.100012
  39. OECD. (2021). OECD digital education outlook 2021: Pushing the frontiers with artificial intelligence, blockchain and robots. Paris: OECD Publishing. https:// doi.org/10.1787/589b283f-en
  40. Oliveira, W., Hamari, J., Joaquim, S., Toda, A.M., Palomino, P.T., Vassileva, J., & Isotani, S. (2022). The effects of personalized gamification on students’ flow experience, motivation, and enjoyment. Smart Learning Environments, 9(1), 16. https://doi.org/10.1186/s40561-022-00194-x
  41. Osipova, L.B. (2024). Artificial intelligence in education: real opportunities and prospects. PNRPU Sociology and Economics Bulletin, (1), 60–73. (In Russ.) https://doi.org/10.15593/2224-9354/2024.1.5
  42. Palvia, S., Aeron, P., Gupta, P., Mahapatra, D., Parida, R., Rosner, R., & Sindhi, S. (2018). Online education: Worldwide status, challenges, trends, and implications. Journal of Global Information Technology Management, 21(4), 233–241. https://doi.org/10.1080/1097198x.2018.1542262
  43. Panigrahi, R., Srivastava, P.R., & Sharma, D. (2018). Online learning: Adoption, continuance, and learning outcome — A review of literature. International Journal of Information Management, 43, 1–14. https://doi.org/10.1016/j.ijinfomgt.2018.05.005
  44. Pobokin, P.A., Ivchenkova, J.Y., & Kapustina, V.U. (2021). Correction of psychological defenses and anxiety of students using VR training programs. Psychological-Educational Studies, 13(4), 147–161. (In Russ.) https://doi.org/10.17759/psyedu.2021130409
  45. Polushko, A.O., & Saulenko, N.I. (2021). Influence of distance learning on the psycho-emotional state of students. Forcipe, 4(S1), 711. (In Russ.)
  46. Radha, R., Mahalakshmi, K., Kumar, V.S., & Saravanakumar, A.R. (2020). E-learning during lockdown of COVID-19 pandemic: A global perspective. International Journal of Control and Automation, 13(4), 1088–1099.
  47. Rahman, M.M., & Watanobe, Y. (2023). ChatGPT for education and research: Opportunities, threats, and strategies. Applied Sciences, 13(9), 5783. https://doi.org/10.3390/app13095783
  48. Richardson, J.C., Maeda, Y., Lv, J., & Caskurlu, S. (2017). Social presence in relation to students’ satisfaction and learning in the online environment: A meta-analysis. Computers in Human Behavior, 71, 402–417. https://doi.org/10.1016/j.chb.2017.02.001
  49. Richter, S., Kishore, S., Piven, I., Dodd, P., & Bate, G. (2025). Chatbots in tertiary education: Exploring the impact of warm and competent avatars on self-directed learning. British Journal of Educational Technology, 56(5), 2102–2124. https://doi.org/10.1111/bjet.13610
  50. Schroeder, N.L., Adesope, O.O., & Gilbert, R.B. (2013). How effective are pedagogical agents for learning? A meta-analytic review. Journal of Educational Computing Research, 49(1), 1–39. https://doi.org/10.2190/ec.49.1.a
  51. Tan, S.F. (2024). Perceptions of students on artificial intelligence-generated content avatar utilization in learning management system. Asian Association of Open Universities Journal, 19(2), 170–185. https://doi.org/10.1108/aaouj-12-2023-0142
  52. Ukenova, A., Bekmanova, G., Zaki, N., Kikimbayev, M., & Altaibek, M. (2025). Assessment and improvement of avatar-based learning system: From linguistic structure alignment to sentiment-driven expressions. Sensors, 25(6), 1921. https://doi.org/10.3390/s25061921
  53. Vallis, C., Wilson, S., Gozman, D., & Buchanan, J. (2024). Student perceptions of AI-generated avatars in teaching business ethics: We might not be impressed. Postdigital Science and Education, 6(2), 537–555. https://doi.org/10.1007/s42438-023-00407-7
  54. Vo, H.M., Zhu, C., & Diep, N.A. (2017). The effect of blended learning on student performance at course-level in higher education: A meta-analysis. Studies in Educational Evaluation, 53, 17–28. https://doi.org/10.1016/j.stueduc.2017.01.002
  55. Yarullina, L.R. (2020). Digital learning in higher school: Psychological risks and effects. World of Science. Pedagogy and Psychology, 8(6), 30. (In Russ.)
  56. Yokoyama, S. (2019). Academic self-efficacy and academic performance in online learning: A mini review. Frontiers in Psychology, 9, 2794. https://doi.org/10.3389/fpsyg.2018.02794
  57. Zawacki-Richter, O., Marín, V.I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education – where are the educators? International Journal of Educational Technology in Higher Education, 16(1), 39. https://doi.org/10.1186/s41239-019-0171-0
  58. Zhang, R., & Wu, Q. (2024). Impact of using virtual avatars in educational videos on user experience. Scientific Reports, 14(1), 6592. https://doi.org/10.1038/s41598-024-56716-9
  59. Zhao, Y., Lei, J., Lai, B.Y.C., & Tan, H.S. (2005). What makes the difference? A practical analysis of research on the effectiveness of distance education. Teachers College Record: The Voice of Scholarship in Education, 107(8), 1836–1884. https://doi.org/10.1111/j.1467-9620.2005.00544.x

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».