Neural oscillatory correlates of motor vigor: an magnetoencephalographic study

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Previous studies have shown that the anticipation of reward enhances motor performance, which reduces movement time and increases velocity [1]. In our recent study [2], we observed that when participants are required to infer the changing probabilities of a reward in a dynamic and uncertain setting, heightened expectations are consistently associated with faster motor performance. The study showed that performance time sensitivity to prediction strength remained consistent among both young and older healthy adults, as well as those with Parkinson’s disease. While the effects of dynamic motor strength have been observed, the neurological processes involved remain to be determined [3].

The study examined the neural oscillatory connections to motor vigor in dynamic and unpredictable settings. We used magnetoencephalography (MEG) and individual structural magnetic resonance imaging (MRI) to record readings from 25 healthy human participants (18 females) during the execution of our newly developed reward-based motor decision-making task [2]. This study used a reversal learning paradigm with shifting stimulus-outcome relationships. Participants were required to deduce which of two stimuli was linked to a reward on each trial, and indicate their choice through one of two finger press sequences, each with a distinct auditory response. The task was conducted in an unstable context, leading to fluctuations in the probability of reward associated with each response over time.

First, we examined decision-making behavior using the validated Hierarchical Gaussian Filter (HGF, [4]). The model that most accurately described the behavioral data was the three-level “extended” HGF for binary categorical inputs, which is paired with a response model where decisions are dependent on the trial-wise estimate of volatility. This study allowed for the generation of reward probability trajectories on a trial-by-trial basis. Subsequently, applying Bayesian linear mixed models, we found a relationship between belief strength regarding reward contingencies and performance tempo on a trial-by-trial basis.

The analysis of MEG signals is centered on reconstructing oscillatory activity sources using Linearly Constrained Minimum Variance beamforming [5]. Currently, we use convolution models in the source space to identify neural oscillatory correlations that differentiate motor performance and decision making. Next, we will evaluate connectivity patterns between frontal and motor regions that underlie the effects of motor invigoration. Identifying particular patterns of oscillatory connectivity that modulate motor vigor can provide insights into motor deficits observed in neurological and neuropsychiatric conditions associated with behavioral apathy.

Full Text

Previous studies have shown that the anticipation of reward enhances motor performance, which reduces movement time and increases velocity [1]. In our recent study [2], we observed that when participants are required to infer the changing probabilities of a reward in a dynamic and uncertain setting, heightened expectations are consistently associated with faster motor performance. The study showed that performance time sensitivity to prediction strength remained consistent among both young and older healthy adults, as well as those with Parkinson’s disease. While the effects of dynamic motor strength have been observed, the neurological processes involved remain to be determined [3].

The study examined the neural oscillatory connections to motor vigor in dynamic and unpredictable settings. We used magnetoencephalography (MEG) and individual structural magnetic resonance imaging (MRI) to record readings from 25 healthy human participants (18 females) during the execution of our newly developed reward-based motor decision-making task [2]. This study used a reversal learning paradigm with shifting stimulus-outcome relationships. Participants were required to deduce which of two stimuli was linked to a reward on each trial, and indicate their choice through one of two finger press sequences, each with a distinct auditory response. The task was conducted in an unstable context, leading to fluctuations in the probability of reward associated with each response over time.

First, we examined decision-making behavior using the validated Hierarchical Gaussian Filter (HGF, [4]). The model that most accurately described the behavioral data was the three-level “extended” HGF for binary categorical inputs, which is paired with a response model where decisions are dependent on the trial-wise estimate of volatility. This study allowed for the generation of reward probability trajectories on a trial-by-trial basis. Subsequently, applying Bayesian linear mixed models, we found a relationship between belief strength regarding reward contingencies and performance tempo on a trial-by-trial basis.

The analysis of MEG signals is centered on reconstructing oscillatory activity sources using Linearly Constrained Minimum Variance beamforming [5]. Currently, we use convolution models in the source space to identify neural oscillatory correlations that differentiate motor performance and decision making. Next, we will evaluate connectivity patterns between frontal and motor regions that underlie the effects of motor invigoration. Identifying particular patterns of oscillatory connectivity that modulate motor vigor can provide insights into motor deficits observed in neurological and neuropsychiatric conditions associated with behavioral apathy.

ADDITIONAL INFORMATION

Funding sources. This study was funded by a grant from the Russian Science Foundation (No. 22-18-00660, https://rscf.ru/project/22-18-00660/).

×

About the authors

M. D. Ivanova

Institute of Cognitive Neuroscience, National Research University “Higher School of economics”

Author for correspondence.
Email: ivanova.marina.d@yandex.ru
Russian Federation, Moscow

K. G. Germanova

Institute of Cognitive Neuroscience, National Research University “Higher School of economics”

Email: ivanova.marina.d@yandex.ru
Russian Federation, Moscow

M. Herrojo Ruiz

Department of Psychology, Goldsmiths, University of London

Email: ivanova.marina.d@yandex.ru
United Kingdom, London

References

  1. Summerside EM, Shadmehr R, Ahmed AA. Vigor of reaching movements: reward discounts the cost of effort. Journal of Neurophysiology. 2018;119(6):2347–2357. doi: 10.1152/jn.00872.2017
  2. Tecilla M, Grossbach M, Gentile G, et al. Modulation of motor vigour by expectation of reward probability trial-by-trial is preserved in healthy ageing and Parkinson’s disease patients. Journal of Neuroscience. 2023;43(10):1757–1777. doi: 10.1523/JNEUROSCI.1583-22.2022
  3. Codol O, Holland P, Manohar SG, Galea JM. Reward-based improvements in motor control are driven by multiple error-reducing mechanisms. Journal of Neuroscience. 2020;40(18):3604–3620. doi: 10.1523/JNEUROSCI.2646-19.2020
  4. Received: 11.05.2023 Accepted: 26.11.2023 Published online: 20.01.2024
  5. Mathys CD, Lomakina EI, Daunizeau J. Uncertainty in perception and the hierarchical gaussian filter. Frontiers in Human Neuroscience. 2014;8:825. doi: 10.3389/fnhum.2014.00825
  6. Van Veen BD, Van Drongelen W, Yuchtman M, Suzuki A. Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Transactions on biomedical engineering. 1997;44(9):867–880. doi: 10.1109/10.623056

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».